• Title/Summary/Keyword: Current Stiffness

Search Result 449, Processing Time 0.032 seconds

Analysis of the Major Design Parameters of a Pantograph-Railway Catenary System for Improving the Current Collection Quality (집전성능 향상을 위한 팬터그래프-전차선의 주요 설계 파라미터분석)

  • Cho, Yong Hyeon
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • Stiffness variations and wave propagation/reflection in railway catenaries are the primary sources of contact loss between a pantograph and a railway contact wire. This paper analyzes which design parameter is more important for 200km/h conventional rail and 300km/h high-speed rail, in order to effectively reduce the contact loss. For the high-speed rail, the wave propagation and reflection in the overhead contact lines are more influential than the stiffness variation over a span. When the high-speed rail needs to speed-up, it is necessary to develop higher strength contact wires in order to increase the wave propagation speed. In addition, the dropper clamp mass should be reduced in order to alleviate the wave reflection. However, it is noted that the increase in the tension to a messenger wire could deteriorate the current collection quality, which contrasts with expectations. For the 200km/h conventional rail, the stiffness variation over a span is more influential than the wave propagation and reflection. Therefore, shortening span length, increasing the tension in the contact wire and optimizing the location of the droppers are recommended for a smoother stiffness variation over the span.

Assessment and Improvement of Ocean Physics for Coastal Erosion Projects (연안침식방지사업의 해양물리분야 평가실태 및 개선방안)

  • TAC, Daeho;OH, Hyuntaik
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.947-956
    • /
    • 2016
  • This study analysed the documents of Sea Area Utilization Consultation of JongChun and ApHae located in West Coast of Korea and NaJeong located in East Coast of Korea in order to find out problems of site surveys and numerical simulations for coastal erosion projects of ocean physics, and suggested the improvement way to go. Current especially like wave-induced current is the one of the important external forces to handle coastal erosion but underestimated in the west coast. In case of east coast the various tests including wave-induced current were conducted but less efficient to find out the reasons of coastal erosion. The stiffness structure to protect coastal line like beach made the secondary erosion by using them without sufficient analysis for the erosion. In order to consult a Sea Area Utilization Consultation those are needed to review the scenarios for external forces such as wave and tidal currents, the site surveys for external forces, the net sediment analysis for years, the long periods of monitoring, and the guide line and revision of the rule for coastal erosion.

ECONOMICAL NONLINEAR RESPONSE ANALYSIS USING STIFFNESS MEASURE APPROACH (강성측정법을 이용한 경제적인 비선형해석)

  • 장극관
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.219-228
    • /
    • 1996
  • A method used for measuring the stiffness of hinging reinforced concrete frame structures is developed. The so called Stiffness Measure Method is used to evaluate the tangent stiffness of hinge regions while the structure is responding in nonlinear ranges. Eigenvector methods for nonlinear response have not been especially popular because of the need for regenerating eigenvectors as the time history proceeds. In the present work the eigenvectors sets and corresponding nonlinear state variables, i. e., the tangent stiffnesses of the hinge regions, are stored. There is an expectation that previously generated eigenvectors can be reused as the analysis proceeds. The stiffness measure is used to compare the current tangent stiffnesses of hinge regions with those of previously stored eigenvectors sets. Since eigenvector calculations are diminished the method is effective in reducing computational effort for reinforced concrete frame structures subjected to strong ground motions.

  • PDF

Initial stiffness and moment capacity assessment of stainless steel composite bolted joints with concrete-filled circular tubular columns

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.681-697
    • /
    • 2019
  • This paper numerically assesses the initial stiffness and moment capacity of stainless steel composite bolted joints with concrete-filled circular tubular (CFCT) columns. By comparing with existing design codes including EN 1993-1-8 and AS/NZS 2327, a modified component method was proposed to better predict the flexural performance of joints involving circular columns and curved endplates. The modification was verified with independent experimental results. A wide range of finite element models were then developed to investigate the elastic deformations of column face in bending which contribute to the corresponding stiffness coefficient. A new design formula defining the stiffness coefficient of circular column face in bending was proposed through regression analysis. Results suggest that a factor for the stiffness coefficient of endplate in bending should be reduced to 0.68, and more contribution of prying forces needs to be considered. The modified component method and proposed formula are able to estimate the structural behaviour with reasonable accuracy. They are expected to be incorporated into the current design provisions as supplementary for beam-to-CFCT column joints.

Optimal Design of Passive Magnetic Bearings (수동형 자기베어링의 최적 설계)

  • Noh, Myoung-Gyu;Yi, Ji-Eun;Yoo, Seong-Yeol
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.283-287
    • /
    • 2007
  • Permanent-magnet (PM) passive bearings use the repulsive forces between the rotor and the stator magnets for the bearing function. It is desirable that the stiffness of the bearing is maximized with the given volume of the magnet. The stiffness is affected by the magnet strength, the number of layers, and the magnetization patterns. Previously, finite-element method (FEM) has been used to maximize the stiffness of the bearing. In this paper, we used the equivalent current sheet method to calculate the stiffness. The validity of this approach is checked against FEM results. The optimized bearing is applied to a micro flywheel energy storage system.

fabrication of the tunneling devices for the minimal displacement sensing (미세변위 측정을 위한 턴널링소자의 제조)

  • 심대근;양영신;마대영
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.107-110
    • /
    • 2000
  • In this experiment, we fabricated pyramid-type silicon tunneling devices in which a tunneling current flow between a micro-tip and Si$_3$N$_4$ thin film membrane. A MEMS process was used for the fabrication of the tunneling devices. The micro-tips were formed on Si wafers by undercutting a differently oriented square of SiO$_2$ with KOH. The stiffness of the Si$_3$N$_4$ films were observed and the model for the stiffness calculation, which is useful in predicting the stiffness even when the stiffness ranges beyond the scope of the normal experimental condition, was suggested.

  • PDF

Adaptively tuned dynamic absorber

  • Kim, Tae-Hyun;Park, Young-Jin;Kim, Heung-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.111.4-111
    • /
    • 2001
  • In this paper, an adaptively tuned dynamic absorber is proposed. The adaptively tuned dynamic absorber is a dynamic absorber whose stiffness is tuned so that the natural frequency of the absorber coincides with the operating or natural frequency estimated by an adaptive algorithm. The feature of this absorber is as follows. It has an electrodynamic device for the stiffness control. Using Lorenz´s force, it changes the stiffness by changing the applied current. The change of stiffness results in the natural frequency shift, because its mass and damping coefficient are fixed. We may reduce the vibration of the overall system by tuning the natural frequency of the dynamic absorber to the resonant frequency of the structure, when the dominant single tone oscilation occurs in the system ...

  • PDF

Analysis on the behavior of Stiffened Reinforcement within Reinforced earth retaining wall (보강토 옹벽 축조시 사용되는 보강재의 강성이 시공완료후 보강토 옹벽 구조체의 거동에 미치는 영향)

  • 박병영;유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.06a
    • /
    • pp.1-11
    • /
    • 2001
  • This Paper presents the result of a parametric study on the behavior of stiffened grid reinforced segmental wall resting on non-yielding foundation. The parametric study was conducted using the nonlinear finite element analysis. In the finite element analysis, the step by step construction of the wall such as backfill, block reinforcement, block/backfill and soil/reinforcement interfaces were carefully modeled. The mechanical behavior of stiffened grid reinforced segmental walls was then investigated based on the result of analysis with emphasis on the effect of reinforcement stiffness on the behavior of the wall. The results of analysis indicate that the horizontal wall displacement decrease; with increasing the reinforcement stiffness at a decreasing rate, and that the horizontal stress at the back of the reinforced soil block does not much vary with the reinforcement stiffness. It is also revealed that the calculated maximum vertical stress at the base of the reinforced soil block agrees well with that based on the Meyerhof distribution and that the reinforcement and the connection force are considerably smaller than what might be expected based on the current design assumptions. The implications of the findings from this study to current design approaches were discussed in detail.

  • PDF

Identification of Dynamic property of Squeeze Film Damper Using Magnetic Fluid (자성유체를 이용한 스퀴즈 필름 댐퍼의 동특성 동정)

  • Ahn, Young Kong;Ha, Jong-Yong;Kim, Yong-Han;Ahn, Kyoung Kwan;Yang, Bo-Suk;Morishita, Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.227-230
    • /
    • 2005
  • The paper presents the identification of dynamic property of a rotor system with a squeeze film damper (SFD) using magnetic fluid. An electromagnet is installed in the inner damper of the SFD. The magnetic fluid is well known as a functional fluid. Its rheological property can be changed by controlling the applied current to the fluid and the fluid can be used as lubricant. Basically, the proposed SFD has the characteristics of a conventional SFD without an applied current, while the damping and stiffness properties change according to the variation of the applied electric current. Therefore, when the applied current is changed, the whirling vibration of the rotor system can be effectively reduced. The clustering-based hybrid evolutionary algorithm (CHEA) is used to identify linear stiffness and damping coefficients of the SFD based on measured unbalance responses.

  • PDF