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ECONOMICAL NONLINEAR RESPONSE ANALYSIS
USING STIFFNESS MEASURE APPROACH
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Abstract

A method used for measuring the stiffness of hinging reinforced concrete frame structures is devel-
oped. The so called Stiffness Measure Method is used to evaluate the tangent stiffness of hinge
regions while the structure is responding in nonlinear ranges. Eigenvector methods for nonlinear
response have not been especially popular because of the need for regenerating eigenvectors as the
time history proceeds. In the present work the eigenvectors sets and corresponding nonlinear state
variables, 1. e. , the tangent stiffnesses of the hinge regions, are stored. There is an expectation that
previously generated eigenvectors can be reused as the analysis proceeds. The stiffness measure is
used to compare the current tangent stiffnesses of hinge regions with those of previously stored
eigenvectors sets. Since eigenvector calculations are diminished the method is effective in reducing
computational effort for reinforced concrete frame structures subjected to strong ground motions.

Keywords : nonlinear analysis, stiffness measure, eigenvectors, reinforced concrete frame
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1. INTRODUCTION

The planned location and strength of flex-
ural hinges in reinforced concrete structures
provides strict control of nonlinear seismic beh-
avior. Usually the hinges are selected to max-
imize inelastic energy dissipation while sat-
isfying necessary constraints. In a building the
so-called strong-column /weak-beam design
philosophy [1] results in hinging at beam ends
of all floors (Fig. 1-(a)). The columns of these
buildings do not hinge except at the footings
and roof. Bridge structures contrast with buil-
dings because the prestressed box girder sup-
erstructure is not ductile. The hinges are des-
igned to occur in the piers of bridges (Fig. 1-
(b)). In both types of structures, the number
of hinges is limited to a relatively small finite
number. Therefore, the nonlinear behavior in
buildings and bridges responding to earthquak-
es 1s confined to a relatively small number of
regions. These structures are expected to have
significant inelastic global displacements dur-
ing a typical earthquake response, e. g., dis-
placement ductility factors [2] equal to 8 are
expected. Curvature ductility factors in the
hinge regions, 1. e., the exclusive locations of
inelastic behavior, can reach 20.

The nonlinear behavior of these structures is
completely controlled by the behavior of the
hinge regions. Then it seems to be a reason-
able proposal that there is sufficient
moment-curvature information in the hinge reg-
ions to completely predict the overall nonlinear
structure behavior. If true, the proposal is hel-
pful because it permits us to efficiently repres-
ent nonlinear behavior. In other words, the tan-
gent stiffnesses of the hinge regions operating
in nonlinear states can be linked directly to
the overall stiffness of the structure. The over-
all stiffness can then be tied to the frequencies
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(a) Building

Grade

(b) Bridge

4 N .
(O Location’of plastic hinge zones

Fig. 1 Plastic Hinge Forming Patterns

and mode shapes of the structure as it exists
at any time during an earthquake simulation.
As simulation time goes by, the nonlinear stat-
es of hinge stiffness undergo changes and ther-
efore a different set of mode shapes and freq-
uencies 1s needed each time the stiffness chan-
ges.

Nickell {3] showed that the reduced basis
method can be successfully used to predict the
nonlinear behavior of structures. The method
[3] suggested that new mode shapes should be
recalculated after each time step. Efficiency
of the method was claimed through : 1) achiev-
ing completeness with a limited number of eig-
envectors, and 2) using subspace iteration met-
hods [4] for the eigenvector calculations. Nev-
ertheless, the recomputation of eigenvectors
after each time step is a burdensome process.
The resulting eigenvalue or reduced basis met-
hod is not clearly superior to direct methods.
There has been a continuing interest [5-6, 7]

in using reduced bases for representing nonlin-



Aeral

ear behavior. These papers have focused on
different formulations and applications of the
reduced basis methods. There has been little
or no work which links the overall structure
stiffness to the appropriate set of eigenvectors
that is needed as the nonlinear analysis proc-
eeds.

Within the framework of the eigenvalue met-
hod, the concept of re-using the eigenvectors
[8] is considered. This means that after an
elapsed period of time, several different sets
of eigenvectors have been calculated to repres-
ent the nonlinear behavior. Also these differ-
ent sets of eigenvectors have been stored for
reuse. The reuse of eigenvectors saves effort,
but when necessary a new eigenvector calcu-
lation is performed during the step-forward in-
tegration, A new technique is needed to im-
plement the decision making process, i. e.,
whether to reuse an old set of eigenvectors or
to perform a new eigenvector calculation. The
tangent stiffnesses, i. e., El values of the hin-
ge regions, will provide the information which
I1s necessary for making the eigenvector de-
cision. The main objective of this paper is to
present the new technique which will be called
the Stiffness Measure Approach (SMA).

2. STIFFNESS MEASURE WITH
EIGENVECTORS

Each time that an eigenvector calculation is
performed the resulting eigenvalues, eigenvec-
tors, and hinge EJ stiffnesses are stored for
reuse, There 1s a unique connection between
the current hinge EJ values and the resulting
eigenvalues and eigenvectors. The proposed
SMM selects the eigenvector set for use or
opts to calculate a new set of eigenvectors dep

ending on the EJ values.

During the time integration whicr s perfor-
med using the uncoupled normal coordinates,
there is a need to know the curvatures within
the hinge regions. The curvature, evaluated at
the midpoint of the hinge zones (Fig. 2), can
be found from differentiated forms of displace-
ment interpolation functions, for subelement 1
the midpoint curvature is given by

l 0 v V1

Kk (__1.): 1 i 1 ,
2/ " (1)

vy

1 V4

where k(/,/ 2) = curvature evaluated at the
midpoint of the subelement 1 : v),++,vy = end
displacement coordinates of subelement 1 ; and
5, = length of subelement 1. The hinging is as-
sumed to occur in zones 1 and 3 at the ends of
the element (Fig. 2). Interior displacement
coordinates are related to the exterior coordin-
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Fig. 2 Hinge Zone Element
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ates through static condensation since lumped
masses are only considered to act at the ends
of elements.

As the integration of uncoupled normal
equations proceeds it is necessary to evaluate
the displacement coordinates of elements, but
this can be done by identifying the appropriate
elements of each set eigenvectors to be used
for recovering the element displacements.
Therefore, the subelement displacement coor-
dinates v1, vy, w3, and v, (Fig. 2) can be ef-
ficiently determined after each time step of
the explicit formulation [2] and indirect met-
hod of integration [3] used herein. Then the
curvatures are found from eqn, (1).

A time-history of midpoint curvature is
known therefore for each hinge or subelement.
Reinforced concrete building and bridge struc-
tures responding to earthquakes will have cyc-
lic or reversing type curvature histories. The
current EY values of the hinge zone can be de-
termined from the slope of the moment-curva-
ture relationship.

Moment-curvature relationships appropriate
for reinforced concrete sections have been
studied extensively [9]. Many different ana-
lytical formulations with varying levels of com-
plexity have been proposed. A relationship
which gives excellent prediction of reinforced
concrete structure response [10] and yet is
convenient to use is portrayed in Fig. 3. The
hysteretic moment-curvature relation has 4
branches as follows : 1) initial elastic branch
which should be based on cracked moment of

inertia, 2) primary post yield branch, 3) unload-

ing branch with amplitude dependent degrad-
ing stiffness, and 4) load reversal branch. The
time varying EJ, i. e., the tangent stiffness of
the moment-curvature relationships, can be
readily determined from the 4-branch rela-
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‘ tionship depicted in Fig. 3 because the curva-

ture history of each hinge zone is known,

When the Efs are known for all hinge zones
then the nonlinear stiffness of the structure is
known. If we were to compute the eigenvector
s and eigenvalues for the structure with these
hinge stiffnesses, it would be prudent to save
or store the EJ's along with the eigenvectors
and eigenvalues, Alternatively, it might not be
necessary to compute the eigenvectors, i, e., if
there is a stored set of them which closely res-
emble the needed set. The decision to compute
new eigenvectors or to use a stored set can be
based on the relation

Moment (A1)

Primary Curve

A
e

Load Reversal

.~ Branch Number

Fig. 3 Q-Hyst. Model

1 MAXUEDS (ED*
N e MINC(ED!, (ED*

SM* =

(2)

where, SM* is the stiffness measure for stor-
ed eigenvector (EV) set £: (ED! > 0 is the
current value of EJ for hinge zone ; at time t
found uéing eqn. (1) and moment-curvature



law for the hinge (Fig. 3) : (ED¥ > 0 is the EI
value for hinge zone i and stored EV set £; N
is total number of hinge zones,

In each fractional term of egn. (2) the lar-
ger quantity is in the numerator while the
smaller quantity is in the denominator. The
value of each fraction will be equal to or great-
er than unity, When the fraction for hinge 7 is
unity it means that the current EJ value of hin
ge 7 is equal to the stored EI value of hinge
for eigenvector set k. After summation the res-
ult is normalized with N, Accordingly, the SM*
value will be equal to or greater than unity. If
SM?* is unity it means that for all hinges there
is complete equality between the current EJ
values and the EJ values for eigenvector set 4.

Eqgn. (2) is a measure of the quality of the
representation of each stored eigenvector set
k. In the use of eqn. (2) there are two import-
ant considerations which are :

1) Among the available eigenvector sets, &,
the one with the smallest SM* value will prov-
ide the best normal coordinate representation
of the response,

2) Even the best set £ may not provide a suf-
ficiently accurate representation of the respon-
se. For example, if at time, ¢, there is a sud-
den shift in the participation factors [2] then
the distribution of current hinge EJ values will
be radically different from the stored EI val-
ues available for all sets. Therefore none of
the stored sets is sufficiently accurate and a
new set of eigenvectors must be generated.

It is a straightforward procedure to select
the best available normal coordinate repres-
entation, i. e., consideration 1), Let

SMyw=MINGSM!, SM%,---,.SM™) (3)

where, SMyy is the smallest SM* value and M

Is a total number of stored EV sets. The % val-

ue corresponding to SMuym, 1. €.,
SM*=SMynw (4)

and £ is the integer identifying the best avail-
able EV set.

Consideration 2) pertains to a significant
change in the EJ values from those which had
previously occurred during the simulation.
This means that SMuww is too large and the
stored EV sets are not sufficiently accurate to
represent the structural response. Chang [9]
verified that previously generated EV sets
may not accurately represent response of fram-
es in earthquakes, This is where the option to
generate a new set of eigenvectors enters, The
decision to generate a new set of eigenvectors

1s based on
SMuymw > 1te (5)

where € ) 0 is the tolerance in the stiffness
measure of the best available EV set. If eqn.
(5) is satisfied then a new EV set must be gen-
erated. The tolerance quantity, & can be used
in convergence studies. In general, when smal-
ler values of € are used then new sets of eig-
envectors are generated more frequently.

3. DEVELOPMENTS OF SOLUTION PROCEDURE

The equations of motion in generalized coor-
dinates for iteration with current eigenvalues
and eigenvectors are,

(TGO + [y + [ (D H? Jisy)

(o] ({tFRO—RDYT) (6)

where, superscript i denotes an iteration
number and greater than 1: w(#)i-1 and ®(¢)

i-1 are natural frequency and mode shape rep-
resenting the stiffness state at the end of the
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(-Dth iteration : and {8y}'={y(#)V—{y ()}
To solve the Eq. (6), define the i-th incremen-
tal velocity, {45} and incremental acceleration,
{65}, which correspond to the i-th incremental

displacements, {5y}’
og¥=lgV—GwH¥t | or
O ¥=lg(t—Ap i+ Z{(Sy'}”
n=1
ogy=1g()V =Gyt , or
GOY={it—ant+ Y oy
n=1
Rewrite {65}, {y(#)} and {oyV with the know-
n responses from the (71)th iteration in con-
junction with the Newmark’s constant average
acceleration method and transferring all known

terms to the right hand side gives the follow-
ing uncoupled equations of motion.

2 . .
(18 et B (w0 ) si,
={o ™ (IR - RV
() =% ()T (8)

Eqn.(8) can be solved for the incremental
acceleration of the i-th iteration, {57}, The ith
incremental displacement {87} is calculated
based on {5y}’

) 2 )
oy =8 155y (9)
In order to evaluate the restoring force, the

displacements in generalized coordinates need
to be transformed to real coordinates by

{ov = [®(H) 7 N{oyY (10)
Y = (¥ T+ (s (11)

Then we can calculate the restoring force,
R(#)}, corresponding to the real displacements
of the i-th iteration, {v(¢#)}. According to the
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moment-curvature relation the stiffnesses of
hinge zones can be traced for displacement, {v
(O}

As the stiffness changes, the SM value (Eq,
2) between the current stiffness state and the
stiffness state of the previous iteration is cal-
culated. If Eq. (5) is satisfied, the iteration is
continued with eigenvectors and eigenvalues
used in the previous iteration, Otherwise, basis
vectors need to be changed. Then SM values
(Eq. 2) between the current stiffness state
and stiffness states of the stored HZS sets are
evaluated. If Eq. (5) is satisfied for the value
of SMuw, Ea. (3), the eigenvectors and eig-
envalues of the HZS set with SMyy will be
chosen and be used for the next iteration’
Otherwise, the new eigenvalues and eigenvec-
tors are calculated and saved as a new HZS
set for later use,

The iteration process should be continued
until the convergence tolerance meets the al-
lowable value within a time step. An appropri-
ate convergence measure need be employed,
The convergence tolerance used here is the rat
io of absolute values of incremental displace-

ments and total displacements,

TP%)}J‘]T < CONV (12)
Vv f

in which CONV is the maximum allowable
value for the convergence. When a change of
basis vectors takes place, acceleration and vel-
ocity should be updated for changed basis vec
tors by the Eq. (12) is satisfied, continue the
response calculation to the next time step.
The process may be continued step-by-step
until any desired time.



4. NUMERICAL STUDIES

4.1 5-story Panar Moment Resisting Frame

A 5-story 2-bay planar moment resisting
frame (Fig. 4) is used for evaluating the
SMM. The frame which behaves as a strong
column /weak beam structure was developed
in Ref. [1]. The Q-hyst model (Fig. 3) is used
for the moment-curvature relations of the hin-
ge zones. The post-yield slope of the
moment-curvature relations, i. e. , branch @,
is assumed to be 0.5% of the initial value.

Lumped masses are placed at the beam-col-
umn joint coordinates., Viscous damping is as-
sumed to be proportional to the mass. The
proportionality coefficient, a, was chosen so
that a decay equivalent to 5% of critical damp-
ing of the first elastic mode was achieved, i

e., let

4, = 251 w1 (13)

and
C=aM (14)

where C, M = damping and mass matrices
respectively ; & = damping coefficient, 0.05 ;

w; = first natural frequency of linear system.

The 15 beam-column joints (Fig. 4) were rep-

resented with 45 degrees of freedom. During
the earthquake simulation eigenvector sets
consisting of 5 mode shapes were generated as
required by eqns. (2) through (5). The 5 mode
shape sets are sufficiently complete for the
purpose of representing the lateral response.
Five mode shapes for a hinge yield pattern oc-
curring during the simulation are presented n
Fig. 5. The rapid angle changes, i. €., kinks,
which occur in the hinge zones are apparent in
the various mode shapes.

The frame has an elastic fundamental period

LSS S
\ i ?
Lo 762m_! 762m_.

Fig. 4 Configuration of Ductile 5-Story 2-Bay Strong Col-
umn/Weak Beam Moment Resisting Frame
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EI Distribution
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Fig. 5 Nonlinear Mode Shapes (When frame has 15 Plastic
hinges)

of 0.84 sec. The seismic coefficient, 1. e., the
base story vield shear divided by the building
weight, was 0.352. This coefficient is in the
normal range. The frame was subjected to the
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S16E component of the 1971 Pacoima Dam rec-
ord. The record is considered to be severe
because of the high values of peak velocity
and acceleration. We chose it for the present
study because strong nonlinear behavior was
guaranteed to occur.

Results

The roof displacement and base story shear
results are given in Fig. 6. Roof displacement
ductility of 3 is reached during the simulation,
The purpose of the analysis is to show how the
results are affected by convergence studies
with € given in eqn. (5). A comparison of the
results with the direct integration is also
made. Convergence studies with Af, the time
step interval, have also been performed but
are not indicated in Fig. 6. There is excellent
agreement in roof displacement for ¢ < 0.1,
The base story shear requires smaller e for con-
vergence, 1. e., € < 0.075.

It is also of interest to consider the number
of eigenvector set calculations versus & (Fig.
7). The number of eigenvector set calculations’
required depends on the strength of nonlinear-
ity and the value of €. For the 1971 Pacoima
record, the required number of EV set calcula-
tions is plotted against € for values less than
2. The number hovers around 50 for 0.08 < ¢
< 0.2. When €=0 then 899 eigenvector set cal-
culations are required out of 4000 time steps.

4.2 Bridge Example
A 5 span frame bridge similar to Fig. 1 was
studied using the SMM. The equal spans were
40.23m (130ft) and shaft heights were 15.24m
(50ft) above grade and 24.38m (80ft) below

grade. Ten beam elements were used to repres-

ent each span. Each shaft had 5 elements be-
low grade and 3 elements above grade, and
nodes touching the soil had springs represent-
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Roof Displacement (cm)

Yield
Displacement

SMM (;=02) SMM (,=0.1) SMM (;=0.075) Direct Integration I

Time (seconds)

Fig. 6 Response Time Histories for Various Values of €

Hyst-
yielding and gapping ef-

ing the lateral subgrade modulus.
eretic-like  soil
fects were represented in the subgrade modu-
lus p-y relations. The hinging in the structure
was represented to occur at the tops of the
shafts and slightly below the grade line (Fig.
1). The representations of hinge zones, mas-
ses, and damping follow the procedures used in
the building example,

83 nodes were represented with 249 degrees
of freedom. During the earthquake simulation
eigenvector sets consisting of 17 mode shapes
were generated as required to satisfy com-
pleteness criteria. All but the fundamental
mode were representing the vertical motion of
the deck, and these did not significantly affect
the shaft hinging or soil vielding. The funda-
mental mode occurring in the different eig-
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Note : (1) when € = 0, number of EV set calculations =
899
(2) total number of time steps = 4000

Fig. 7 Influence of Stiffness Measure Tolerance, e, on EV
set Calculations for Frame Structure.

envector sets represented lateral response.
The different fundamental modes in the sets
depicted the various states of hinging and soil
yielding. The bridge model had an elastic fun-
damental period of 1.85 sec. and lateral seismic
coefficient of 0.3.

A vertical downward gravity load and vertic-
al upward force caused by the draped prestres-

s cable were applied while the bridge were sub:

jected to the horizontal component of the 1994
Pacoima Dam accelerogram. The 1971 and 1994
records are amazingly similar with near equal

peak accelerations and velocities.

Results

The diagram of maximum moments oCCurr-
ing at 4.459 sec. is presented in Fig. 8. At that
time, the shafts have hinges at two locations,
and the surface soil springs representing the
subgrade modulus are in yield conditions. The
SMM results which are compared with direct
integration are obtained for a large value of €,
1. e., e=6, 0.

Relatively few sets of eigenvectors are need-
ed in this case because it is primarily the fun-

=
......... '\“'"""‘Y"'”'
7/ /
@ Shah Hinging tDnvulln!em:llﬂ SMM (= 6 0)
o X YieedSotSenng LT ot

Fig 8. Comparison of Moment Diagrams when the Mo-
ments in the Shafts were the Maximum. (at 4.495 sec.)

Number of EV set Calcutations

0 0.04 008 0.12 018 02 0.24 028 . 5.96 80

{

Note : {1) when £ = 0. number of EV set calculations = 692
(2) total number of time steps = 4000

Note : (1) when & = 0, number of EV set calculations =
692
(2) total number of time steps == 4000

Fig. 9 Influence of Stifiness Measure Tolerance, &, on EV
set Calculations for Bridge Structure.

damental mode that is contributing to the non-
linearity. In Fig. 9 it is shown that for € = 0.
012, there are only 14 required eigenvector set
calculations. There is tremendous efficiency in
this case because only 14 sets of eigenvectors
need be generated out of a total of 4000 time
steps. The computational effort is comparable
with a linear eigenvector type of solution.

Each of the 14 sets has a different funda-
mental mode. Please note the fundamental per-
jod Ty = 1.85sec. for the elastic or stiffest stat-
e and T, = 2.08sec. for set used at the time of
maximum moment (Fig. 8). The variation in T}
is an indication of the strength of the nonlin-
earity. The requirement for the low number of
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sets (14) is consistent with a lateral stiffness
history which was : 1) constant and highest
during the initial elastic condition, 2) wildly
swinging between highest, lowest, and inter-
mediate values during the single cycle high
impulse response, and 3) operating in a narrow
intermediate range for the lower amplitude
cyclic response occurring thereafter. The res-
ponse to 1971 and 1994 Pacoima records is char-
acterized by a large single cycle followed by
lower amplitude motions with varying frequen-
cies, e. g., Figs. 5 and 6.

5. CONCLUSION

The representation of reinforced concrete
operating dynamically in the nonlinear range
can be greatly simplified because the nonlinear
behavior occurs in a small number of regions
called hinges. Further the response can be rep-
resented with sets of eigenvectors, each set
corresponding to various nonlinear states occur-
ring in the hinge regions,

The so called Stiffness Measure Approach is
used to match the appropriate set of elgenvec-
tors with the nonlinear state of the hinge reg-
ions. Eigenvector sets and tangent stiffnesses
of the hinges are stored for reuse after they
are generated. As the step-forward time inte-
gration proceeds the Stiffness Measure Ap-
proach is used to decide if the stored eigenvec-
tors can be used or if a new eigenvector set
must be generated. The decision to generate a
new set is based on a quantity called the stif-
fness measure tolerance,

The reduction of numerical effort achieved
by the Stiffness Measure Approach is implied
in the building and bridge examples presented
herein. The reduction occurs because the var-
lous sets of eigenvectors representing different
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nonlinear hinged states of the structure are
reused thus saving the effort of re-computing

the eigenvectors,
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