• Title/Summary/Keyword: Current Constriction

Search Result 25, Processing Time 0.027 seconds

A Superior Description of AC Behavior in Polycrystalline Solid Electrolytes with Current-Constriction Effects

  • Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.150-161
    • /
    • 2016
  • The conventional brick-layer model is not satisfactory either in theory or in practice for the description of dispersive responses of polycrystalline solid electrolytes with current-constriction effects at the grain boundaries. Parallel networks of complex dielectric functions have been shown to successfully describe the AC responses of polycrystalline sodium conductors over a wide temperature and frequency range using only around ten model parameters of well-defined physical significance. The approach can be generally applied to many solid electrolyte systems. The present work illustrates the approach by simulation. Problems of bricklayer model analysis are demonstrated by fitting analysis of the simulated data under experimental conditions.

A Study on the Influence of Coaxial Parallel Magnetic Field upon Plasma Jet (Plasma Jet의 동축평행 자계에 의한 영향에 관한 연구 ( 1 ))

  • 전춘생
    • 전기의세계
    • /
    • v.22 no.2
    • /
    • pp.57-69
    • /
    • 1973
  • The aim of this study was to investigate the behaviors of plasma jet under coaxial magnetic field in paralled with it for controlling optical characteristics and input power of plasma jet without impurity and instability of arc plasma column. Because the discharge characteristics of plasma jet were so distinctively different according to the existence or non-existence of magnetic field, the input power, luminous intensity of plasma jet and thermal efficiency were comparatively studied in respect of such variables as arc current, gap of electrode, quantity of argon flow, magnetic flux density, diameter and length of nozzle, with the use of several materials which were different in diameter and length of nozzel. The results were as follows; 1) The voltage tends to show a drooping characteristic at law current and then rises gradually. The luminous intensity of plasma jet increases exponentially with arc current. 2) Arc voltage increases and luminous intensity tends to decrease gradually as gap of electrode increases. 3) Arc voltage and luminous intensity tends to decrease gradually as gap of electrode increases. 3) Arc voltage and luminous intensity increase in accordance with the quantity of argon flow. 4) At first step, arc voltage increases to maximum value with the growth of flux density and then tends to show a gradual decrease. Luminous intensity decreases with the growth flux density. 5) Arc voltage decreases as the constriction length of nozzle increases, maximum decrease is shown at the constriction length of 20(mm) and it increases beyond that value. The luminous intensity decreases as the constriction length grows. 6) Arc voltage and luminous in tensity increase with the growth of diameters of nozzle. 7) Thermal efficiency has values between 50% and 75%, being influenced by arc current, the quantity of argon flow, flux density, the length of electrode gap and the constriction length of nozzle.

  • PDF

Normalized gestural overlap measures and spatial properties of lingual movements in Korean non-assimilating contexts

  • Son, Minjung
    • Phonetics and Speech Sciences
    • /
    • v.11 no.3
    • /
    • pp.31-38
    • /
    • 2019
  • The current electromagnetic articulography study analyzes several articulatory measures and examines whether, and if so, how they are interconnected, with a focus on cluster types and an additional consideration of speech rates and morphosyntactic contexts. Using articulatory data on non-assimilating contexts from three Seoul-Korean speakers, we examine how speaker-dependent gestural overlap between C1 and C2 in a low vowel context (/a/-to-/a/) and their resulting intergestural coordination are realized. Examining three C1C2 sequences (/k(#)t/, /k(#)p/, and /p(#)t/), we found that three normalized gestural overlap measures (movement onset lag, constriction onset lag, and constriction plateau lag) were correlated with one another for all speakers. Limiting the scope of analysis to C1 velar stop (/k(#)t/ and /k(#)p/), the results are recapitulated as follows. First, for two speakers (K1 and K3), i) longer normalized constriction plateau lags (i.e., less gestural overlap) were observed in the pre-/t/ context, compared to the pre-/p/ (/k(#)t/>/k(#)p/), ii) the tongue dorsum at the constriction offset of C1 in the pre-/t/ contexts was more anterior, and iii) these two variables are correlated. Second, the three speakers consistently showed greater horizontal distance between the vertical tongue dorsum and the vertical tongue tip position in /k(#)t/ sequences when it was measured at the time of constriction onset of C2 (/k(#)t/>/k(#)p/): the tongue tip completed its constriction onset by extending further forward in the pre-/t/ contexts than the uncontrolled tongue tip articulator in the pre-/p/ contexts (/k(#)t/>/k(#)p/). Finally, most speakers demonstrated less variability in the horizontal distance of the lingual-lingual sequences, which were taken as the active articulators (/k(#)t/=/k(#)p/ for K1; /k(#)t/

Calculation of Electrodynamic Repulsion Force in Molded Case Circuit Breakers Using the 3-D Finite Element Analysis (3차원 유한요소 해석을 이용한 배선용 차단기의 전자반발력 계산)

  • Kim, Yong-Gi;Park, Hong-Tae;Song, Jung-Chun;Seo, Jung-Min;Degui, Chen
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.137-140
    • /
    • 2003
  • To the optimization design of molded case circuit breakers(MCCBs), it is necessary and important to calculate the electro-dynamic repulsion force acting on the movable conductor. With 3-D finite element nonlinear analysis, according to the equations among current-magnetic field-repulsion force and taking into account the ferromagnet, contact bridge model is introduced to simulate the current constriction between contacts, so Lorentz and Holm force acting on the movable conductor and contact, respectively, can be integrated to calculate. Coupled with circuit equations, the opening time of movable contact also can be obtained using iteration with the restriction of contact force. Simulation and experiment for repulsion forte and opening time of five different configuration models have been investigated. The results indicate that the proposed method is effective and capable of evaluating new design of contact systems in MCCBs.

  • PDF

Development of a Smartphone-based Pupillometer

  • Kim, Tae-Hoon;Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.249-254
    • /
    • 2013
  • In ophthalmology, a pupillometer, a device to measure the diameter of the pupil of the eye, can provide information on the function of the autonomic nervous system. The current pupillometers on the market are either too large to be a handheld instrument, or relatively expensive. In this study, a pupillometer based on a smartphone was designed. Both white and infrared LEDs and a 3M pixel camera of a smartphone were applied for the visual stimuli to an eye and for the acquisition of the eye images, respectively. Contrary to the existing method of pupil measurement that usually observe the variation of pupil diameter, the proposed algorithm in this study was applied to calculate the constriction ratio of the pupillary area in response to pupillary light reflex. The results showed that the constriction ratio of the pupillary area were all in the normal range (above 4.0) from the sixteen healthy participants. It is believed that the approach to pupil measurement used in this study is suitable for a mobile interface, and this system can be applied to clinical research, home-use healthcare, and distributed to some areas which suffer from problems like a lack of medical support.

Prediction of High-Current Arc Constriction in a Cup-Type AMF Electrode (컵형 AMF 전극의 대전류 아크집중 예측)

  • An, Jeongho;Lee, Jong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.59-60
    • /
    • 2015
  • 본 논문에서는 상용 CAE 프로그램인 ANSYS를 이용하여 전자기해석과 유동해석을 연계 계산하였고, 전류크기를 변수로 하여 접점 사이에 발생되는 온도분포를 분석함으로써 컵형 AMF 전극의 아크집중 현상을 예측하였다.

  • PDF

Curcumin Attenuates Chronic Constriction Nerve Injury-Induced Neuropathic Pain in Rats (Curcumin의 신경병증성 통증 억제효과)

  • Kim, Chae-Eun;Park, Eun-Sung;Jeon, Young-Hoon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.3
    • /
    • pp.183-187
    • /
    • 2008
  • Nerve injury can lead to neuropathic pain, which is often resistant to current analgesics and interventional therapeutic methods. Extracellular signal-regulated kinase (ERK) plays important role in the induction of neuropathic pain. We explored the antinociceptive effect of curcumin and its effect on ERK in the spinal cord in the neuropathic pain model of rats induced by chronic constriction injury (CCI) of the sciatic nerve. In injured rats, mechanical allodynia, which is one of characteristics of neuropathic pain developed and the activation of ERK in spinal cord significantly increased compared with control group. However, administration of curcumin (50 mg/kg/day p.o) for 7 days started from one day before the injury prevented the development of mechanical allodynia and increase of ERK phosphorylation. These results indicate that curcumin can be a new therapeutic agent in the treatment of neuropathic pain.

Thermo-hydrodynamic investigation into the effects of minichannel configuration on the thermal performance of subcooled flow boiling

  • Amal Igaadi;Rachid El Amraoui;Hicham El Mghari
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.265-274
    • /
    • 2024
  • The current research focuses on the development of a numerical approach to forecast strongly subcooled flow boiling of FC-72 as the refrigerant in various vertical minichannel shapes for high-heat-flux cooling applications. The simulations are carried out using the Volume of Fluid method with the Lee phase change model, which revealed some inherent flaws in multiphase flows that are primarily due to an insufficient interpretation of shearlift force on bubbles and conjugate heat transfer against the walls. A user-defined function (UDF) is used to provide specific information about this noticeable effect. The influence of shape and the inlet mass fluxes on the flow patterns, heat transfer, and pressure drop characteristics are discussed. The computational results are validated with experimental measurements, where excellent agreements are found that prove the efficiency of the present numerical model. The findings demonstrate that the heat transfer coefficient decreases as the mass flux increases and that the constriction design improves the thermal performance by 24.68% and 10.45% compared to the straight and expansion shapes, respectively. The periodic constriction sections ensure good mixing between the core and near-wall layers. In addition, a slight pressure drop penalty versus the thermal transfer benefits for the two configurations proposed is reported.

Lumbar foraminal neuropathy: an update on non-surgical management

  • Choi, Young Kook
    • The Korean Journal of Pain
    • /
    • v.32 no.3
    • /
    • pp.147-159
    • /
    • 2019
  • Lumbar foraminal pathology causing entrapment of neurovascular contents and radicular symptoms are commonly associated with foraminal stenosis. Foraminal neuropathy can also be derived from inflammation of the neighboring lateral recess or extraforaminal spaces. Conservative and interventional therapies have been used for the treatment of foraminal inflammation, fibrotic adhesion, and pain. This update reviews the anatomy, pathophysiology, clinical presentation, diagnosis, and current treatment options of foraminal neuropathy.

Electrical Characterization of Electronic Materials Using FIB-assisted Nanomanipulators

  • Roh, Jae-Hong;You, Yil-Hwan;Ahn, Jae-Pyeong;Hwang, Jinha
    • Applied Microscopy
    • /
    • v.42 no.4
    • /
    • pp.223-227
    • /
    • 2012
  • Focused Ion Beam (FIB) systems have incorporated versatile nanomanipulators with inherent sophisticated machining capability to characterize the electrical properties of highly miniature components of electronic devices. Carbon fibers were chosen as a model system to test the applicability of nanomanipulators to microscale electronic materials, with special emphasis on the direct current current-voltage characterizations in terms of electrode configuration. The presence of contact resistance affects the electrical characterization. This resistance originates from either i) the so-called "spreading resistance" due to the geometrical constriction near the electrode - material interface or ii) resistive surface layers. An appropriate electrode strategy is proposed herein for the use of FIB-based manipulators.