• Title/Summary/Keyword: Current Collectors

Search Result 56, Processing Time 0.023 seconds

Effect of carrier collector on the Efficiency of DSSCs

  • Ramasamy, Easwaramoorthi;Lee, Won-Jae;Lee, Dong-Yun;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.633-634
    • /
    • 2005
  • Transparent conducting glasses exhibit high ohmic losses that are apparent in the case of large size Dye Sensitized Solar Cells (DSSCs). In this study, we investigated the impact of current collectors over the efficiency of DSSCs. The Silver current collectors were prepared on both counter electrode and working electrode surface by screen printing method. For long term stability in electrolyte environment and also to avoid the charge recombination, current collectors are protected by sodium silicate overcoat layer. These current collectors were characterized for their microstructure parameters. Also current collector's stability in electrolyte environment has been investigated.

  • PDF

Strategies for Protecting Waste Collectors' Health and Safety (환경미화원의 건강과 안전 보호를 위한 제안)

  • Kim, Shin-bum;Ryu, Seung-Hun;Park, Dong-Uk;Lee, Yun-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.247-253
    • /
    • 2010
  • Recycling is a main issue in protection of the environment and waste collection and sorting have much higher value in current recycling policies than they did previously. Waste collectors, like firefighters and policemen, are working for the public benefit, however, waste collection is more dangerous than either police or firefighting work. In the USA, waste collectors are 10 times more likely than the average worker to die on the job. Waste collectors also suffer from musculoskeletal disorders, infectious diseases and various injuries. If we truly appreciate the worth of waste collectors, we need to improve their working environment and personal hygiene. Furthermore, abolishing discrimination will be a very important step towards greater protection for waste collectors.

Enhanced Electrochemical Reactivity at Electrolyte/electrode Interfaces of Solid Oxide Fuel Cells with Ag Grids

  • Choi, Mingi;Hwang, Sangyeon;Byun, Doyoung;Lee, Wonyoung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.356-360
    • /
    • 2015
  • The specific role of current collectors was investigated at the electrolyte/electrode interface of solid oxide fuel cells (SOFCs). Ag grids were fabricated as current collectors using electrohydrodynamic (EHD) jet printing for precise control of the grid geometry. The Ag grids reduced both the ohmic and polarization resistances as the pitch of the Ag grids decreased from $400{\mu}m$ to $100{\mu}m$. The effective electron distribution along the Ag grids improved the charge transport and transfer at the interface, extending the active reaction sites. Our results demonstrate the applicability of EHD jet printing to the fabrication of efficient current collectors for performance enhancement of SOFCs.

Current Collectors for Flexible Lithium Ion Batteries: A Review of Materials

  • Kim, Sang Woo;Cho, Kuk Young
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • With increasing interest in flexible electronic devices and wearable appliances, flexible lithium ion batteries are the most attractive candidates for flexible energy sources. During the last decade, many different kinds of flexible batteries have been reported. Although research of flexible lithium ion batteries is in its earlier stages, we have found that developing components that satisfy performance conditions under external deformation stress is a critical key to the success of flexible energy sources. Among the major components of the lithium ion battery, electrodes, which are connected to the current collectors, are gaining the most attention owing to their rigid and brittle character. In this mini review, we discuss candidate materials for current collectors and the previous strategies implemented for flexible electrode fabrication.

Domestic Status of Solar Thermal Collectors and Hot Water Heaters (태양열 집열기 및 온수기에 대한 국내 현황)

  • Kim, Seok-Jong
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.84-88
    • /
    • 1991
  • In this technical status report, domestic solar makers and dealers for thermal collectors and hot water heaters are surveyed. The characteristics and specifications of their items are also classified and discussed. Collectors and hot water heaters are the key part of solar thermal systems which have been developed under the national policy for the development and utilization of new and renewable energy resources. This report provides the current domestic status of solar collectors which may be a good reference for the solar industry and related organizations.

  • PDF

Layered Nickel-Based Oxides on Partially Oxidized Metallic Copper Foils for Lithium Ion Batteries

  • Chung, Young-Hoon;Park, Sun-Ha;Kim, Hyun-Sik;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.204-210
    • /
    • 2011
  • Thin film electrodes have been intensively studied for active materials and current collectors to enhance the electrochemical performance. Here, porous structures of nickel-based oxide films, consisting of nickel oxide and copper (II) oxide, which was derived from the copper substrate during the annealing process, were deposited on metallic copper foils. The half-cell tests revealed excellent capacity retention after $80^{th}$ charge/discharge cycles. Some films showed an excess of the theoretical capacity of nickel oxides, which mainly originate from partially oxidized copper substrates during annealing. These results exhibit that both a preparation method of an active materials and partially oxidized current collectors could be important roles to apply thin film electrodes.

Stretchable Current Collector Composing of DMSO-dopped Nano PEDOT:PSS Fibers for Stretchable Li-ion Batteries (신축성 리튬이온전지를 위한 DMSO 도핑 PEDOT:PSS 나노 섬유 집전체)

  • Kwon, O. Hyeon;Lee, Ji Hye;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.93-99
    • /
    • 2021
  • In order to decrease the weight of stretchable energy storage devices, interest in developing lightweight materials to replace metal current collectors is increasing. In this study, nanofibers prepared by electrospinning a conductive polymer, PEDOT:PSS, were used as current collectors for lithium ion batteries. The nanofiber showed improved electrical conductivity by using DMSO, a dopant, and indicated a stretch rate of 30% or more from the elasticity evaluation result. In addition, the use of the nanofiber current collector facilitates penetration of the liquid electrolyte and exhibits the effect of increasing the electronic conductivity through the nanofiber network. The lithium-ion battery using the DMSO-doped PEDOT:PSS@PAM nanofiber current collector indicated a high discharge capacity of 135mAh g-1, and indicated a high capacity retention rate of 73.5% after 1000 cycles. Thus, the excellent electrochemical stability and mechanical properties of conductive nanofibers showed that they can be used as lightweight current collectors for stretchable energy storage devices.

Thin Film Energy Storage Device with Spray-Coated Sliver Paste Current Collector

  • Yoon, Seong Man;Jang, Yunseok;Jo, Jeongdai;Go, Jeung Sang
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.874-879
    • /
    • 2017
  • This paper challenges the fabrication of a thin film energy storage device on a flexible polymer substrate specifically by replacing most commonly used metal foil current collectors with coated current collectors. Mass-manufacturable spray-coating technology enables the fabrication of two different half-cell electric double layer capacitors (EDLC) with a spray-coated silver paste current collector and a Ni foil current collector. The larger specific capacitances of the half-cell EDLC with the spray-coated silver current collector are obtained as 103.86 F/g and 76.8 F/g for scan rates of 10 mV/s and 500 mV/s, respectively. Further, even though the half-cell EDLC with the spray-coated current collector is heavier than that with the Ni foil current collector, smaller Warburg impedance and contact resistance are characterized from Nyquist plots. For the applied voltages ranging from -0.5 V to 0.5 V, the spray-coated thin film energy storage device exhibits a better performance.

Evaluation of Electrochemical Stability and Performance of Graphite Sheets as Current Collectors for Lead Acid Battery (납축전지 전류집전체로서 그라파이트 시트의 전기화학적 안정성과 방전성능 평가)

  • An, Sang-Yong;Kim, Eung-Jin;Yoon, Youn-Saup;Kim, Hee-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.128-131
    • /
    • 2010
  • Graphite sheet electro-deposited with lead was evaluated as a possible candidate for current collectors of lead acid batteries. Cyclic voltammetry was performed on the materials to evaluate the electrochemical properties. The graphite sheet electro-deposited with lead is electrochemically stable in the cathodic potential sweep. However, in the anodic potential sweep, the graphite sheet electro-deposited with lead is electrochemically unstable due to the oxygen evolution and the intercalation of sulfuric acid. Lead acid batteries were prepared by using a graphite sheet and a cast grid as current collectors for anode and performance test using those batteries was carried out. A lead acid battery with graphite sheets showed higher capacity and energy density than a conventional lead acid battery with cast grid.