• Title/Summary/Keyword: Current Collapse

Search Result 234, Processing Time 0.03 seconds

A Study on FAD Development for Probabilistic Pressure Tube Integrity Assessment (압력관의 확률론적평가에 타당한 파손평가선도 작성에 관한 연구)

  • Kwak, Sang-Log;Wang, Jong-Bae;Choi, Young-Hwan;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1211-1215
    • /
    • 2003
  • Pressure tubes are major component of nuclear reactor, but only selected samples are periodically examined due to numerous numbers of tubes. Current in-service inspection result show there is high probability of flaw existence at un-inspected pressure tube. Probabilistic analysis is applied in this study for the integrity assessment of un-inspected pressure tube. But all the current integrity evaluations procedures are based on conventional deterministic approaches. So many integrity evaluation parameters are not directly apply to probabilistic analysis. As a result of this study failure assessment diagram are proposed based on test data.

  • PDF

Improvement of Seismic Performance Evaluation Method for Concrete Dam Piers by Applying Collapse-Level Earthquake(CLE) (붕괴방지수준(CLE)을 적용한 콘크리트 댐 피어부 내진성능평가 방안 개선)

  • Jeong-Keun Oh;Yeong-Seok Jeong;Min-Ho Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • The purpose of this paper is to suggest a method for applying a reasonable dam axial seismic load loading method and load-bearing capacity evaluation method in the dynamic analysis of the pier part of a concrete dam to which the seismic force of the collapse prevention level is applied. To this end, the pier part of a concrete dam was selected as a target facility, and the characteristics of the dynamic behavior in the axial direction of the weir dam were analyzed through dynamic analysis applying various weir widths, and 'U.S. The load-bearing capacity evaluation was performed by applying the RC hydraulic structure evaluation technique suggested by the Army Corps, 2007'. As a result of the study, when applying seismic force in the axial direction of the pier part, it is more realistic to assume that the axial direction of the weir part dam behaves as a rigid body and 'U.S. Army Corps, 2007' suggested that the method of reviewing the load-bearing capacity for moment and shear was considered reasonable, so it was concluded that improvement of the current evaluation method was necessary. If the improvement of the research result is applied, it will have the effect of deriving more reasonable evaluation results than the current seismic performance evaluation method using CLE. It is judged that additional research is needed in the future on the torsional moment occurring in the pier part.

Seismic Performance Assessment of Unreinforced Masonry Wall Buildings Using Incremental Dynamic Analysis (증분동적해석을 통한 비보강 조적벽식 건물의 내진성능 평가)

  • Kwon, Ki Hyuk;Kim, Man Hoe;Kim, Hyung Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.28-39
    • /
    • 2013
  • The most common housing type in Korea is low-rise buildings with unreinforced masonry walls (UMWs) that have been known as a vulnerable seismic-force-resisting system (SFRS) due to the lack of ductility capacities compared to high lateral stiffness of an UMW. However, there are still a little experimental investigation on the shear strength and stiffness of UMWs and on the seismic performance of buildings using UMWs as a SFRS. In Korea, the shear strength and stiffness of UMWs have been evaluated with the equations suggested in FEMA 356 which can not reflect the structural and material characteristics, and workmanship of domestic UMW construction. First of all, this study demonstrates the differences in shear strength and stiffness of UMWs obtained from between FEMA 356 and test results. The influence of these differences on the seismic performance of UMW buildings is then discussed with incremental dynamic analyses results of a prototype UMW building that were selected by the site survey of more than 200 UMW buildings and existing test results of UMWs. The seismic performance assessment of the prototype UMW building are analyzed based on collapse margin ratios and beta values repesenting uncertainty of seismic capacity. Analysis results show that the seismic performance of the UMW building estimated using the equations in FEMA 356 underestimates both a collapse margin ratio and a beta value compared to that estimated by test results. Whatever the estimation is carried out two cases, the seismic performance of the prototype building does not meet the criteria prescribed in a current Korean seismic code and about 90% collapse probability presents for more than 30-year-old UMW buildings under earthquakes with 2400 return years.

Effect of Current Density on Material Removal in Cu ECMP (구리 ECMP에서 전류밀도가 재료제거에 미치는 영향)

  • Park, Eunjeong;Lee, Hyunseop;Jeong, Hobin;Jeong, Haedo
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.79-85
    • /
    • 2015
  • RC delay is a critical issue for achieving high performance of ULSI devices. In order to minimize the RC delay time, we uses the CMP process to introduce high-conductivity Cu and low-k materials on the damascene. The low-k materials are generally soft and fragile, resulting in structure collapse during the conventional high-pressure CMP process. One troubleshooting method is electrochemical mechanical polishing (ECMP) which has the advantages of high removal rate, and low polishing pressure, resulting in a well-polished surface because of high removal rate, low polishing pressure, and well-polished surface, due to the electrochemical acceleration of the copper dissolution. This study analyzes an electrochemical state (active, passive, transpassive state) on a potentiodynamic curve using a three-electrode cell consisting of a working electrode (WE), counter electrode (CE), and reference electrode (RE) in a potentiostat to verify an electrochemical removal mechanism. This study also tries to find optimum conditions for ECMP through experimentation. Furthermore, during the low-pressure ECMP process, we investigate the effect of current density on surface roughness and removal rate through anodic oxidation, dissolution, and reaction with a chelating agent. In addition, according to the Faraday’s law, as the current density increases, the amount of oxidized and dissolved copper increases. Finally, we confirm that the surface roughness improves with polishing time, and the current decreases in this process.

Domestic current situation and Improvement plan Consideration of Electricity Design&Supervision System (전기설계.감리제도의 국내.외 현황 및 개선방안 고찰)

  • Nam, Gi-Beom;Lee, Jong-Hyeok;Jeon, Yeong-SU;Yang, Sun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2005.11c
    • /
    • pp.14-18
    • /
    • 2005
  • The Reason of collapse accidents, Seongsu bridge Accident in 1994 and Sampung department store Accident in 1995 and so on, that is found out to the shortage construction. Consequently, depending on orderer's self-regulating judgement the meanwhile, Electricity Technique Administration Law in 1995 owes at the public opinion to need the plan of a law system device about the electricity design and supervision and is born. This various issue problem, the combined ordering with Constructing, Electricity, fire-fighting, Information & Communication and so on, field problem, low cost services, the problem about the selection procedure of the design and supervision businessman, the business range between general and specialized, which the system appears as are carried out have been risen. Therefore basic solution plan about this have been desired. We consider a domestic current situation about an electricity design supervision system in this paper, and try to present the plan for healthy upbringing development of the electricity industry through this.

  • PDF

Modes of Innovation and the National Systems of Innovation of the BRICS Economies

  • Scerri, Mario
    • STI Policy Review
    • /
    • v.5 no.2
    • /
    • pp.20-42
    • /
    • 2014
  • The Brazil, Russia, India China and South Africa (BRICS) group has emerged as a collection of large economies which are outside the traditional groups of industrialised "first world" economies and which have altered the global distribution of economic power. The basis of their emergence is a combination of their size and growth rates, and the fact that they lie outside the established centres of global economic power. As such, they have "diversified" the power base of the global economic order. The question which is asked in this paper is whether the phenomenon of the BRICS goes beyond this to mark the start of a possible challenge to the neoliberal orthodoxy which emerged as the globally dominant policy paradigm since the collapse of the Soviet Union. This paper develops and uses a "modes of innovation" approach to explore the potential of the BRICS to constitute a structural rupture in the current globally dominant neoliberal mode of innovation. This question is important since, in the absence of this rupture, the remarkable development trajectory of the BRICS will serve to reinforce the legitimacy of the global orthodoxy. The paper first articulates the modes of innovation concept and then proceeds to locate the BRICS systems of innovation within the current globally dominant mode. On this basis it then provides an appraisal of the possible impact of the BRICS on the evolutionary path of the global system of innovation.

Effect of Cavitation Amplitude on the Electrochemical Behavior of Super Austenitic Stainless Steels in Seawater Environment (해수 환경에서 슈퍼 오스테나이트 스테인리스강의 전기화학적 거동에 미치는 캐비테이션 진폭의 영향)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.138-146
    • /
    • 2022
  • The cavitation and potentiodynamic polarization experiments were conducted simultaneously to investigate the effect of cavitation amplitude on the super austenitic stainless steel (UNS N08367) electrochemical behavior in seawater. The results of the potentiodynamic polarization experiment under cavitation condition showed that the corrosion current density increased with cavitation amplitude increase. Above oxygen evolution potential, the current density in a static condition was the largest because the anodic dissolution reaction by intergranular corrosion was promoted. In the static condition, intergranular corrosion was mainly observed. However, damage caused by erosion was observed in the cavitation environment. The micro-jet generated by cavity collapse destroyed the corrosion product and promoted the repassivation. So, weight loss occurred the most in static conditions. After the experiment, wave patterns were formed on the surface due to the compressive residual stress caused by the impact pressure of the cavity. Surface hardness was improved by the water cavitation peening effect, and the hardness value was the highest at 30 ㎛ amplitude. UNS N08367 with excellent mechanical performance due to its high hardness showed that cavitation inhibited corrosion damage.

A Experimental Study on Performance Improvement Factors of Used V4 Steel Pipe Support (재사용 V4 강재 파이프 서포트의 성능향상 요인에 관한 실험적 연구)

  • Choi, Myeongki;Park, Jongkeun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.43-48
    • /
    • 2020
  • It is considered that most of reusable pipe supports, which are used as formwork support posting at construction sites, do not meet the performance standard. Due to the use of reusable pipe supports that do not meet such performance standard the potential risk of collapse accident is increasing. Therefore, this study identifies the status of compliance with performance standard, and presents the requirements for improving quality control to prevent the collapse of pipe supports reused at the construction site. First, if the female thread of the product with no clearance and new support pin with the diameter of 12mm are replaced at the same time for use, it is considered that the performance will be improved. Second, as the quality performance during use can be improved in the case of larger thickness of inner diameter compared to the case of larger thickness of outer diameter, it is necessary to increase the inner pipe thickness greatly than the current thickness. Based on the results of this study, it is expected that the performance the reusable pipe support (V4) can be improved, if the diameter of the support pin is 12mm, the female thread has a small clearance, and the inner tube thickness is 2.3 ~ 2.7mm. In addition, it is considered that other performance improvement factors included in the study results could be used as important data for improving the performance of reusable pipe support.

Geosynthetic Reinforced Segmental Retaining Wall Failure Buying Heavy Rainfall - A Case Study (집중강우시 발생한 블록식 보강토 옹벽의 붕괴사례)

  • Yoo Chung-Sik;Jeon Han-Yong;Jung Hye-Young;Jung Hyuk-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.135-143
    • /
    • 2005
  • This paper presents a case history of a geosynthetics-reinforced segmental retaining wall, which collapsed during a severe rainfall immediately after the completion of the wall construction. In an attempt to identify possible causes for the collapse, a comprehensive investigation was carried out including physical and strength tests on the backfill, stability analyses on the as-built design based on the current design approaches, and slope stability analyses with pore pressure consideration. The investigation revealed that the inappropriate as-built design and the bad-quality backfill were mainly responsible for the collapse. This paper describes the site condition including wall design, details of the results of investigation and finally, lessons learned. Practical significance of the findings from this study is also discussed.

Development of Nonlinear Analysis Technic to Determine the Ultimate Load in Electric Transmission Tower (송전철탑의 극한하중 도출을 위한 비선형해석 기법)

  • Kim, Woo Bum;Choi, Byong Jeong;Ahn, Jin Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.389-398
    • /
    • 2008
  • The current design practice of electric transmission tower is based on the allowable stress design. However, it is difficult to find the cause behind a transmission tower's collapse by the above design approach as the collapse is caused by large secondary deformations based on and geometrical nonlinear behavior.influence factor for the nonlinear behavior is mainly residual stress, initial imperfection and end restraints on members. In this study, the necessity of the nonlinear analysis is examined through the comparison between elastic ana the nonlinear analysis, a new analytical method (equivalent nonlinear analysis technique) is proposed. To confirm the reliability of the proposed method, the computed ultimate load of the transmission tower using the method was compared with that of the nonlinear finite element analysis. Effects of parameters, such as compressive force and the slenderness ratio of the brace member on the main post member, were investigated. The effective member length according to influential parameters was formulated in table form for practical purposes.