Browse > Article
http://dx.doi.org/10.14773/cst.2022.21.2.138

Effect of Cavitation Amplitude on the Electrochemical Behavior of Super Austenitic Stainless Steels in Seawater Environment  

Heo, Ho-Seong (Graduate school, Mokpo national maritime university)
Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
Publication Information
Corrosion Science and Technology / v.21, no.2, 2022 , pp. 138-146 More about this Journal
Abstract
The cavitation and potentiodynamic polarization experiments were conducted simultaneously to investigate the effect of cavitation amplitude on the super austenitic stainless steel (UNS N08367) electrochemical behavior in seawater. The results of the potentiodynamic polarization experiment under cavitation condition showed that the corrosion current density increased with cavitation amplitude increase. Above oxygen evolution potential, the current density in a static condition was the largest because the anodic dissolution reaction by intergranular corrosion was promoted. In the static condition, intergranular corrosion was mainly observed. However, damage caused by erosion was observed in the cavitation environment. The micro-jet generated by cavity collapse destroyed the corrosion product and promoted the repassivation. So, weight loss occurred the most in static conditions. After the experiment, wave patterns were formed on the surface due to the compressive residual stress caused by the impact pressure of the cavity. Surface hardness was improved by the water cavitation peening effect, and the hardness value was the highest at 30 ㎛ amplitude. UNS N08367 with excellent mechanical performance due to its high hardness showed that cavitation inhibited corrosion damage.
Keywords
Super austenitic stainless steel; Cavitation; Seawater; Electrochemical; UNS N08367;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 P. V. Rao, Evaluation of epoxy resins in flow cavitation erosion, Wear, 122, 77 (1988). Doi: https://doi.org/10.1016/0043-1648(88)90008-7   DOI
2 S. F. Lee, J. F. Garcia, S. S. Yap, and D. Hui, Pitting corrosion induced on high-strength high carbon steel wire in high alkaline deaerated chloride electrolyte, Nanotechnology Reviews, 11, 973 (2022). Doi: https://doi.org/10.1515/ntrev-2022-0060   DOI
3 G. S. Vasyliev and O. M. Kuzmenko, Pitting Suppression of AISI 316 Stainless Steel Plates in Conditions of Ultrasonic Vibration, International Journal of Chemical Engineering, 2020, 1 (2020). Doi: https://doi.org/10.1155/2020/6697227   DOI
4 R. Magnabosco and N. A. Falleiros, Pit Morphology and its Relation to Microstructure of 850 ℃ Aged Duplex Stainless Steel, Corrosion, 61, 130 (2005). Doi: https://doi.org/10.5006/1.3278167   DOI
5 N. R. Ammar and I. S. Seddiek, Eco-environmental analysis of ship emission control methods: Case study RORO cargo vessel, Ocean Engineering, 137, 166 (2017). Doi: https://doi.org/10.1016/j.oceaneng.2017.03.052   DOI
6 I. J. Jang, J. M. Jeon, K. T. Kim, Y. R. Yoo, and Y. S. Kim, Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15℃, Corrosion Science and Technology, 20, 26 (2021). Doi:https://doi.org/10.14773/cst.2021.20.1.26   DOI
7 S. Ghosh and T. Ramgopal, Effect of Chloride and Phosphoric Acid on the Corrosion of Alloy C-276, UNS N08028, and UNS N08367, Corrosion, 61, 609 (2005). Doi: https://doi.org/10.5006/1.3278197   DOI
8 J. D. Fritz and R. J. Gerlock, Chloride stress corrosion cracking resistance of 6% Mo stainless steel alloy (UNS N08367), I, 135, 93 (2001). Doi: https://doi.org/10.1016/S0011-9164(01)00142-4   DOI
9 H. K. Hwang and S. J. Kim, Electrochemical Characteristics with Cavitation Amplitude Under Cavitation Erosion of 6061-T6 in Seawater, Corrosion Science and Technology, 19, 318 (2020). Doi: https://doi.org/10.14773/cst.2020.19.6.318   DOI
10 D. M. G. Garcia, J. G. Anton, A. I. Munoz, E. B. Tamarit, Effect of cavitation on the corrosion behaviour of welded and non-welded duplex stainless steel in aqueous LiBr solutions, Corrosion Science, 48, 2380 (2006). Doi: https://doi.org/10.1016/j.corsci.2005.09.009   DOI
11 S. J. Kim, M. S. Han, and M. S. KIM, Evaluation of Corrosion and the Anti-Cavitation Characteristics of Cu Alloy by Water Cavitation Peening, Corrosion Science and Technology, 11, 184 (2012). Doi: https://doi.org/10.14773/cst.2012.11.5.184   DOI
12 M. Sakashita and N. Sato, The effect of molybdate anion on the ion-selectivity of hydrous ferric oxide films in chloride solutions, Corrosion Science, 17, 473 (1977). Doi: https://doi.org/10.1016/0010-938X(77)90003-8   DOI
13 Y. S. Kim, Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels, Corrosion Science and Technology, 9, 20 (2010). Doi: https://doi.org/10.14773/cst.2010.9.1.020   DOI
14 S. J. Kim, K. Y. Hyun, S. K. Jang, Effects of water cavitation peening on electrochemical characteristic by using micro-droplet cell of Al-Mg alloy, Current Applied Physics, 12, 24 (2012). Doi: https://doi.org/10.1016/j.cap.2012.02.013   DOI
15 O. Takakuwa, T. Ohmi, M. Nishikawa, A. T. Yokobori Jr and, H. Soyama, Suppression of fatigue crack propagation with hydrogen embrittlement in stainless steel by cavitation peening, Strength, Fracture and Complexity, 7, 79 (2011). Doi: https://doi.org/10.3233/SFC-2011-0126   DOI
16 R. Sriram and D. Tromans, Pitting Corrosion of Duplex Stainless Steels, Corrosion, 45, 804 (1989). Doi: https://doi.org/10.5006/1.3584986   DOI
17 R. Wang, Effect of ultrasound on initiation, growth and repassivation behaviours of pitting corrosion of SUS 304 steel in NaCl aqueous solution, Corrosion Engineering Science and Technology, 51, 201 (2016). Doi: https://doi.org/10.1179/1743278215Y.0000000046   DOI
18 A. Karimi and J. L. Martin, Cavitation erosion of materials, International Metal Reviews, 31, 1 (1986). Doi: https://doi.org/10.1179/imtr.1986.31.1.1   DOI
19 B. N. Mordyuk, G. I. Prokopenko, M. A. Vasylyev, M. O. Iefimov, Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel, Materials Science and Engineering A, 458, 253 (2007). Doi: https://doi.org/10.1016/j.msea.2006.12.049   DOI
20 D. Sun, Y. Jiang, Y. Tang, Q. Xiang, C. Zhong, J. Liao, and J. Li, Pitting corrosion behavior of stainless steel in ultrasonic cell, Electrochimica Acta, 54, 1558 (2009). Doi: https://doi.org/10.1016/j.electacta.2008.09.056   DOI
21 H. Y. Chang, H. B. Park, Y. S. Kim, S. K. Ahn, and K. T. Kim, Compatibility Evaluation for Application of Lean Duplex Stainless Steels to Seawater Systems in Nuclear Power Plants, Materials Science Forum, 654-656, 382(2010). Doi: https://doi.org/10.4028/www.scientific.net/MSF.654-656.382   DOI
22 K. Li, M. Wu, X. Gu, K. F. Yuen, and Y. Xiaoa, Determinants of ship operators'options for compliance with IMO 2020, Transportation Research Part D: Transport and Environment, 86, 102459 (2020). Doi: https://doi.org/10.1016/j.trd.2020.102459   DOI
23 L. Dahl, Corrosion in flue gas desulfurization plants and other low temperature equipment, Materials and Corrosion, 43, 292 (1992). Doi: https://doi.org/10.1002/maco.19920430610   DOI
24 H. K. Hwang and S. J. Kim, Electrochemical Characteristics of Superaustenitic Stainless Steel with Temperature in Sea Water, Corrosion Science and Technology, 20, 391 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.391   DOI
25 A. I. Karayan, E. M. Visuet, and H. Castaneda, Transpassivity characterization of the alloy UNS N08367 in a chloride-containing solution, Journal of Solid State Electrochemistry, 18, 3191 (2014). Doi: https://doi.org/10.1007/s10008-014-2566-0   DOI
26 R. M. F. Domene, E. B. Tamarit, D. M. G. Garcia, J. G. Anton, Repassivation of the damage generated by cavitation on UNS N08031 in a LiBr solution by means of electrochemical techniques and Confocal Laser Scanning Microscopy, Corrosion Science, 52, 3453 (2010). Doi: https://doi.org/10.1016/j.corsci.2010.06.018   DOI
27 S. J. Kim, S. J. Lee, S. O. Chong, Electrochemical characteristics under cavitation-erosion for STS 316L in seawater, Materials Research Bulletin, 58, 244 (2014). Doi: https://doi.org/10.1016/j.materresbull.2014.03.029   DOI
28 M. Asaduzzaman, C. Mohammad, Mustafa, and M. Islam, Effects of concentration of sodium chloride solution on the pitting corrosion behavior of AISI-304L austenitic stainless steel, Chemical Industry and Chemical Engineering Quarterly, 17, 477 (2011). Doi: https://doi.org/10.2298/CICEQ110406032A   DOI