• Title/Summary/Keyword: Current&Voltage Control Loop

Search Result 320, Processing Time 0.026 seconds

An Effective Control Scheme for Battery Charger System in Electric Vehicles

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.232-233
    • /
    • 2012
  • This paper presents an effective control scheme for an electric vehicle battery charger where a symmetrical bridgeless power factor-corrected converter and a buck converter are cascaded. Both converters have been popular in industries because of their high efficiency, low cost, and compact size, hence combining these converters makes the overall battery charging system strongly efficient. Moreover, this charger topology can operate at universal input voltage and attain a desired battery current and voltage without ripple. In order to achieve a unity input power factor and zero input current harmonic distortion, the proposed control scheme adopts duty ratio feed-forward control technique in both current and voltage control loop. Additionally, in the current loop, its reference is created by a phase-locked loop (PLL) block, leading to a pure sinusoidal input current although the input voltage waveform is being distorted. The feasibility and practical value of the proposed approach are verified by simulation and experiment with an 110V/60Hz ac line input and 1.5kW-72V dc output of the battery charging system.

  • PDF

Performance Improvement of Voltage-mode Controlled Interleaved Buck Converters

  • Veerachary Mummadi
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.104-108
    • /
    • 2005
  • This paper presents the performance improvement of voltage-mode controlled interleaved synchronous buck converters. This is a voltage-mode controlled scheme, where the controllers do not need an external saw-tooth generator for PWM generation and the loop design is easier. The controller implementation requires only a single error amplifier and gives almost current mode control performance. The control scheme uses voltage feedback with two loops similar to current mode control: one for the slow outer loop and the other for the faster inner PWM control loop. To improve the performance of the converter system a coupled inductor is used. This coupled inductor reduces the magnetic size and also improves the converter's transient performance without increasing the steady-state current ripple. The effectiveness of the proposed control scheme is demonstrated through PSIM simulations.

Design and control of Single Loop Output Voltage Controller for 3 Phase PWM Inverter (3상 PWM 인버터의 단일제어루프 전압제어기의 설계 및 제어)

  • Gang B.H.;Gho J.S.;Cho J.S.;Choe G.H.;Kwak C.H.;Kim J.H,
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.496-500
    • /
    • 2001
  • There are two ways in the output voltage control method in PWM inverter. One is the double loop voltage control composed of inner current control loop and outer voltage control loop. Because it shows fast response and low steady state error, utilized in many application. The Other is single loop voltage control method composed of voltage control loop only. It's characteristics shows lower performance in case of high output impedance than double loop voltage control. But in low output impedance, it shows good control performance in all load range than double loop control. In this paper, single loop voltage control rule and gain was developed analytically, and these were verified through computer simulation and experiment.

  • PDF

An Interleaved Five-level Boost Converter with Voltage-Balance Control

  • Chen, Jianfei;Hou, Shiying;Deng, Fujin;Chen, Zhe;Li, Jian
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1735-1742
    • /
    • 2016
  • This paper proposes an interleaved five-level boost converter based on a switched-capacitor network. The operating principle of the converter under the CCM mode is analyzed. A high voltage gain, low component stress, small input current ripple, and self-balancing function for the capacitor voltages in the switched-capacitor networks are achieved. In addition, a three-loop control strategy including an outer voltage loop, an inner current loop and a voltage-balance loop has been researched to achieve good performances and voltage-balance effect. An experimental study has been done to verify the correctness and feasibility of the proposed converter and control strategy.

Design of Triple Loop Current Control for Auxiliary Power Unit of Fuel Cell Train having Grid Connected Inverter Function (계통 연계 기능을 갖는 연료전지 철도차량 보조전원장치의 삼중 루프 전류 제어기 설계)

  • Kwon, Il-Seob;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yual
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.293-302
    • /
    • 2020
  • This study proposes a triple-loop current control method for the auxiliary power unit of fuel cell trains. The auxiliary power unit of fuel cell trains has a grid-connected function when power is supplied to the utility grid. Moreover, the auxiliary power unit of trains has a 1500 V DC link voltage; thus, PWM frequency cannot be increased to a high frequency. Owing to this low PWM frequency condition, creating a triple-loop design is difficult. In this study, a triple-loop controller is developed for a capacitor voltage controller in standalone mode that operates as an auxiliary power supply for trains and for a grid current controller in grid control mode with an inner capacitor voltage controller. The voltage controller employs an inductor current controller inner loop. To overcome low PWM frequency, a design method for the bandwidth of the capacitor voltage controller considering the bandwidth of the inner inductor current controller is described. The effectiveness of the proposed method is proven using PSIM simulation.

Control of Input Series Output Parallel Connected DC-DC Converters

  • Natarajan, Sirukarumbur Pandurangan;Anandhi, Thangavel Saroja
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.265-270
    • /
    • 2007
  • Equal rating DC-DC converter modules can be connected in series at the input for circuits requiring higher input voltages and in parallel at the output for circuits requiring higher output currents. Since the converter modules may not be practically identical, closed loop control has to ensure that each module equally shares the total input voltage and the load current. A control scheme consisting of a common output voltage loop, individual inner current loops and individual input voltage loops have been designed in this work to achieve input voltage and load current sharing as well as load voltage regulation under supply and load disturbances. The output voltage loop provides the basic reference for the inner current loops, which are also modified by the respective input voltage loops. The average of the converter input voltages, which is dynamically varying, is chosen as the reference for input voltage loops. This choice of reference eliminates interaction among different control loops. Type II compensators and Fuzzy Logic Controllers (FLCs) are designed and compared through MATLAB based simulation and FLC is found to be satisfactory. Hence TMS320F2407A DSP based FLC is implemented and the results are presented which prove the superiority of the FLC developed for this research.

Single-Phase Power Factor Correction(PFC) Converter Using the Variable gain (가변이득을 가지는 디지털제어 단상 역률보상회로)

  • Baek, J.W.;Shin, B.C.;Jeong, C.Y.;Lee, Y.W.;Yoo, D.W.;Kim, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.240-243
    • /
    • 2001
  • This paper presents the digital controller using variable gain for single-phase power factor correction (PFC) converter. Generally, the gain of inner current control loop in single-stage PFC converter has a constant magnitude. This is why input current is distorted under low input voltage. In particular, a digital controller has more time delay than an analog controller which degrades characteristics of control loop. So, it causes the problem that the gain of current control loop isn't increased enough. In addition, the oscillation happens in the peak value of the input voltage open loop PFC system gain changes according to ac input voltage. These aspects make the design of the digital PFC controller difficult. In this paper, the improved digital control method for single-phase power factor converter is presented. The variable gain according to input voltage and input current help to improve current shape. The 800W converter is manufactured to verify the proposed control method.

  • PDF

A Novel Control Strategy for Input-Parallel-Output-Series Inverter System

  • Song, Chun-Wei;Zhao, Rong-Xiang;Lin, Wang-Qing;Zeng, Zheng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.85-90
    • /
    • 2012
  • This paper presents a topology structure and control method for an input-parallel-output-series(IPOS) inverter system which is suitable for high input current, high output voltage, and high power applications. In order to ensure the normal operation of the IPOS inverter system, the control method should achieve input current sharing(ICS) and output voltage sharing(OVS) among constituent modules. Through the analysis in this paper, ICS is automatically achieved as long as OVS is controlled. The IPOS inverter system is controlled by a three-loop control system which is composed of an outer common-output voltage loop, inner current loops and voltage sharing loops. Simulation results show that this control strategy can achieve low total harmonic distortion(THD) in the system output voltage, fast dynamic response, and good output voltage sharing performance.

Design-Oriented Stability of Outer Voltage Loop in Capacitor Current Controlled Buck Converters

  • Zhang, Xi;Zhang, Zhongwei;Bao, Bocheng;Bao, Han;Wu, Zhimin;Yao, Kaiwen;Wu, Jing
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.869-880
    • /
    • 2019
  • Due to the inherent feedforward of load current, capacitor current (CC) control shows a fast transient response that makes it suitable for the power supplies used in various portable electronic devices. However, considering the effect of the outer voltage loop, the stable range of the duty-cycle is significantly diminished in CC controlled buck converters. To investigate the stability effect of the outer voltage loop on buck converters, a CC controlled buck converter with a proportion-integral (PI) compensator is taken as an example, and its second-order discrete-time model is established. Based on this model, the instability caused by the duty-cycle is discussed with consideration of the outer voltage loop. Then the dynamical effects of the feedback gain of the PI compensator and the equivalent series resistance (ESR) of the output capacitor on the CC controlled buck converter with a PI compensator are studied. Furthermore, the design-oriented closed-loop stability criterion is derived. Finally, PSIM simulations and experimental results are supplied to verify the theoretical analyses.

Design of Robust Double Digital Controller to Improve Performance for UPS Inverter (UPS 인버터의 성능 개선을 위한 강인한 2중 디지털 제어기의 설계)

  • 박지호;노태균;김춘삼;안인모;우정인
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.116-127
    • /
    • 2003
  • In this paper, a new fully digital control method for UPS inverter, which is based on the double control loop such as the outer voltage control loop and inner current control loop, is proposed. In the proposed control system, overshoots and oscillations due to the computation time-delay are compensated by explicit incorporation of the time-delay in the current control loop transfer function. The inner current control loop is adopted by an Internal model controller The Internal model controller is designed to a second order deadbeat reference-to-output response which means that its response reaches the reference in two sampling time including computational time-delays. The outer voltage control loop employing P-Resonance controller is proposed. The resonance controller has an infinite gain at resonant frequency, and the resonant frequency is set to the fundamental frequency of the reference voltage in this paper. Thus the outer voltage control loop causes no steady state error as regard to both magnitude and phase. The effectiveness of the proposed control system has been verified by the simulation and experimental results respectively.