• Title/Summary/Keyword: Curing conditions

Search Result 695, Processing Time 0.041 seconds

양생조건에 따른 폴리머 시멘트 모르타르의 인장접착강도 (Adhesion in Tension of Polymer-Modified Mortars according to Curing Conditions)

  • 조영국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.200-201
    • /
    • 2018
  • The purpose of this study is to evaluate the adhesion in tension of polymer-modified mortars according to curing conditions. From the test results, the adhesion in tension is seriously affected by type of curing conditions compared with type of polymer dispersions or polymer-cement ratios. The maximum adhesion in tension of EVA-modified mortar with polymer-cement ratio of 20% cured by standard condition is about 1.81 times, the cement mortar cured in water. It is apparent that the adhesion in tension of polymer-modified mortars according to raising of polymer-cement ratio is also much more improved irrespective of type of polymer dispersions and curing conditions.

  • PDF

하이브리드 미터를 이용한 양생조건에 따른 응결 및 압축강도 추정 (Estimation of Setting Time and Compressive Strength of the Concrete According to Curing Conditions Using a Hybrid Meter)

  • 박재웅;정준택;임군수;한준희;김종;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.187-188
    • /
    • 2023
  • This study aimed to evaluate a feasibility of estimating setting time and compressive strength of curing conditions using a Hybrid meter. As a result, It was determined that the measured hardness value at the initial set, final set and at 5MPa of the Hybrid meter were not affected by curing conditions. And the Hybrid meter(A) is confirmed to have a higher correlation, so it is judged to be more suitable for pratical use.

  • PDF

EVA 마이크로 입자를 활용한 고강도 콘크리트의 미세구조특성 (Microstructure Properties of High Strength Concrete Utilizing EVA with Micro Particles)

  • 김영익;성찬용
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.97-101
    • /
    • 2005
  • High strength concretes utilizing EVA with micro particles were prepared by varying polymer/binder mass ratio and curing conditions with a constant water/binder mass ratio of 0.3. The EVA modified concretes on the compressive and flexural strength, microstructure, ultrapulse modulus in curing condition(dry and water curing) were studied. Also, scanning electron microscope analysis(SEM) was performed to reveal the presence of polymer film and cement hydrates in the concrete. The compressive strength of the EVA modified concretes cured at water conditions ere higher than that of the EVA modified concretes cured at dry conditions. But, the flexural strength of the specimens cured at dry conditions were higher than that of the specimens cured at water conditions. Due to the interaction of the cement hydrates and polymer film, an interpenetrating network originated in which the aggregates were embedded. The curing of the polymer modified concrete involves two step of cement hydrates and polymer modification, and cement hydrates was promoted in water conditions and polymer film formation take place when water evaporates and was thereby was favored in dry conditions. By SEM analysis, influences of polymer modification was strengthening of the transition zone between the aggregate and the paste, and the porosity of transition zone decreases. By spring analysis, it could known that polymer film affects in porosity decrease and strengthening of transition zone.

  • PDF

의치상용 자가중합레진의 중합조건에 따른 파괴인성 (FRACTURE TOUGHNESS OF SELF-CURING DENTURE BASE RESINS WITH DIFFERENT POLYMERIZING CONDITIONS)

  • 정수양;김지혜;양병덕;박주미;송광엽
    • 대한치과보철학회지
    • /
    • 제43권1호
    • /
    • pp.52-60
    • /
    • 2005
  • Purpose. The intent of this study was to evaluate the effects of curing conditions on self-curing denture base resins to find out proper condition in self-curing resin polymerization. Materials and methods, In this study, 3 commercial self-curing denture base resins are used Vertex SC, Tokuso Rebase and Jet Denture Repair Acrylic. After mixing the self curing resin, it was placed in a stainless steel mold(3$\times$6$\times$60mm). The mold containing the resin was placed under the following conditions: in air at 23$^{\circ}C$; or in water at 23$^{\circ}C$; or in water at 23$^{\circ}C$ under pressure(20psi); or in water at 37$^{\circ}C$ under pressure(20psi) or in water at 50$^{\circ}C$ under pressure(20psi) , or in water at 65$^{\circ}C$ under pressure(20psi), respectively. Also heat-curing denture base resin is polymerized according to manufactures' instructions as control. Fracture toughness was measured by a single edge notched beam(SENB) method. Notch about 3mm deep was carved at the center of the long axis of the specimen using a dental diamond disk driven by a dental micro engine. The flexural test was carried out at a crosshead speed 0.5mm/min and fracture surface were observed under measuring microscope. Results and conclusion . The results obtained were summarized as follows : 1. The fracture toughness value of self-curing denture base resins were relatively lower than that of heat-curing denture base resin. 2. In Vertex SC and Jet Denture Repair Acrylic, higher fracture toughness value was observed in the curing environment with pressure but in Tokuso Rebase, low fracture toughness value was observed but there was no statistical difference. 3. Higher fracture toughness value was observed in the curing environment with water than air but there was no statistical difference. 4. Raising the temperature in water showed the increase of fracture toughness.

각종 양생방법에 따른 고강도 콘크리트의 강도발현 특성에 관한 연구 (A Study on the Strength Properties of High-Strength concrete under Various curing conditions)

  • 조현대;정재동
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.965-968
    • /
    • 2008
  • 현재 국내현장에서 공사기간 중 구조물의 압축강도를 확인하는 방법으로는 KS F 2403에 의한 시험용 공시체의 압축강도를 구조체 콘크리트의 압축강도로 정하고 있으며, 이 규정의 내용에는 시험용 공시체의 양생방법으로 표준수중양생(20$\pm$2$^{\circ}$C)을 하도록 규정되어 있다. 그러나 현장 타설된 콘크리트의 경우 일반 대기환경에 노출되어 사계절 온도변화의 환경하에서 양생되고 있어 실 구조물의 콘크리트 압축강도와는 큰 차이를 나타내게 된다. 따라서 본 논문에서는 현재 KS에 규정되어 있는 압축강도용 시험체의 양생방법과 현장에서 구조체의 강도 및 거푸집 탈형시기 판정 등의 품질관리를 위해 사용하는 기중양생, 봉함양생, 구조체의 코어강도, 그리고 본 연구에서 제안하는 구조체의 내부환경 조건을 양생조건으로 적용한 양생방법을 적용하여 고강도 콘크리트의 강도발현특성을 파악하여 구조체 콘크리트의 강도에 가장 근접하는 공시체 양생방법을 제안하고자 한다.

  • PDF

Relationship between Compressive Strength of Geo-polymers and Pre-curing Conditions

  • Kim, Hyunjung;Kim, Yooteak
    • Applied Microscopy
    • /
    • 제43권4호
    • /
    • pp.155-163
    • /
    • 2013
  • Meta-kaolin (MK) and blast furnace slag (BS) were used as raw materials with NaOH and sodium silicate as alkali activators for making geo-polymers. The compressive strength with respect to the various pre-curing conditions was investigated. In order to improve the recycling rate of BS while still obtaining high compressive strength of the geo-polymers, it was necessary to provide additional CaO to the MK by adding BS. The specimens containing greater amounts of BS can be applied to fields that require high initial compressive strength. Alkali activator(s) are inevitably required to make geo-polymers useful. High temperature pre-curing plays an important role in improving compressive strength in geo-polymers at the early stage of curing. On the other hand, long-term curing produced little to no positive effects and may have even worsened the compressive strength of the geo-polymers because of micro-structural defects through volume expansion by high temperature pre-curing. Therefore, a pre-curing process at a medium range temperature of $50^{\circ}C$ is recommended because a continuous increase in compressive strength during the entire curing period as well as good compressive strength at the early stages can be obtained.

콘크리트 코어의 강도특성에 관한 연구 (A Study on the Strength Characteristics of Concrete Cores)

  • 권영웅;이성용;신정식;전익찬;김민수;박송철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.85-90
    • /
    • 2002
  • This paper concerns the within test strength of concrete cured under different conditions. Those conditions are water curing, field curing and cores drilled from the existing structures. The test factors are not only above cured conditions but also concrete ages of 3, 7, 14 and 28 days and concrete strength of 202, 252 and 650kgf/$\textrm{cm}^2$. The test results are as follows; (1) In spite of within test results, concrete strength is very different from curing states of concrete (2) The strength of cores drilled from existing structures are smaller than the strength of concrete cured in water by 3~4% and larger than that of concrete cured in field by 8~17% (3) Core strength is largely dependant on the curing state of top surface of concrete.

  • PDF

성숙도 개념을 이요한 콘크리트의 강도예측을 위한 실험적 연구 (And Experimetal Study for Concrete Strength Prediction by Maturity Concept)

  • 유청호;이주형;김태경;윤경구;박제선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.143-150
    • /
    • 1997
  • The maturity concept was adopted to predict the strength of concrete, which was subjected to same temperature conditions and variable curing conditions. Penetration test and compressive test were conducted to measure the initial and final setting time and the compressible strength of concrete specimen, respectively. Also, the temperature and time were recorded at some intervals of time for calculating the maturity. The initial and final setting were delayed as the w/c ratio increased and curing temperature decreased. The activating energy decreased as the w/c ratio increased. The relationships at the relative strength and the maturity were proposed at different w/c ratio for the same temperature curing condition, and these were applied for the variable curing conditions. The results indicated that the difference between the strength of the proposed and the specimen was big at 1 days's age but quite similar after 3 day's age.

  • PDF

The Mechanical Properties of Alkali Resistance Glass Fiber Reinforced Cement under Different Curing Conditions

  • Jeong, Moon-Young;Song, Jong-Taek
    • The Korean Journal of Ceramics
    • /
    • 제4권3호
    • /
    • pp.189-192
    • /
    • 1998
  • The mechanical properties of alkali resistance (AR) glass fiber reinforced cement(GFRC) under different curing conditions were investigated in this study. The specimens were formed by extrusion process, and then steam cured and autoclaved. An autoclaved specimen showed the elastic-brittle behavior up to 4% of fiber volume fraction. However, it was found that the fracture behavior for cured specimen was changed to the elastic-plastic with crack branches fracture at greater than 3 vol.% of fiber.

  • PDF

경화제 함량과 후기경화조건에 따른 DGEBA/MDA/SN계의 절연열화 특성 (Effects of Curing Agent Content and Post-curing Conditions on Dielectric Deterioration Characteristics of DGEBA/MDA/SN System)

  • 조영신;박수길;임기조;심미자;김상욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.313-316
    • /
    • 1997
  • The effects of aromatic curing agent of MDA contents and post curing conditions on dielectric deterioration characteristics of DGEBA/MDA/SN system were investigated. The dielectric properties were measured by using needle-plane electrode geometry under the commercial AC high electric field application. As the curing agent content increased, the dielectric breakdown strength increased and then decreased slightly. All the trees initiated from the tip of needle electrode and the shape of the tree in this system was a dendrite type.

  • PDF