• 제목/요약/키워드: Curing Reaction

검색결과 437건 처리시간 0.034초

경화제 변화에 따른 WLP(Wafer Level Package)용 신규 Epoxy Resin System의 경화특성 (Cure Properties of Novel Epoxy Resin Systems for WLP (Wafer Level Package) According to the Change of Hardeners)

  • 김환건
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.57-67
    • /
    • 2022
  • The curing characteristics of naphthalene type epoxy resin systems according to the change of curing agent were investigated to develop a new next-generation EMC(Epoxy Molding Compound) with excellent warpage characteristics, low thermal expansion, and excellent fluidity for WLP(Wafer Level Package). As epoxy resins, DGEBA, which are representative bisphenol type epoxy resins, NE-16, which are the base resins of naphthalene type epoxy resins, and NET-OH, NET-MA, and NET-Epoxy resins newly synthesized based on NE-16 were used. As a curing agent, DDM (Diamino Diphenyl Methane) and CBN resin with naphthalene moiety were used. The curing reaction characteristics of these epoxy resin systems with curing agents were analyzed through thermal analysis experiments. In terms of curing reaction mechanism, DGEBA and NET-OH resin systems follow the nth curing reaction mechanism, and NE-16, NET-MA and NET-Epoxy resin systems follow the autocatalytic curing reaction mechanism in the case of epoxy resin systems using DDM as curing agent. On the other hand, it was found that all of them showed the nth curing reaction mechanism in the case of epoxy resin systems using CBN as the curing agent. Comparing the curing reaction rate, the epoxy resin systems using CBN as the curing agent showed a faster curing reaction rate than them with DDM as a hardener in the case of DGEBA and NET-OH epoxy resin systems following the same nth curing reaction mechanism, and the epoxy resin systems with a different curing mechanism using CBN as a curing agent showed a faster curing reaction rate than DDM hardener systems except for the NE-16 epoxy resin system. These reasons were comparatively explained using the reaction rate parameters obtained through thermal analysis experiments. Based on these results, low thermal expansion, warpage reduction, and curing reaction rate in the epoxy resin systems can be improved by using CBN curing agent with a naphthalene moiety.

수열합성경화체의 1차 양생조건에 따른 수화특성 (Hydration Characteristics according to First Curing Condition in Solid Hydrated by Hydro-Thermal Synthesis Reaction)

  • 김진만;정은혜;박선규
    • 콘크리트학회논문집
    • /
    • 제20권5호
    • /
    • pp.543-548
    • /
    • 2008
  • 프리캐스트 제품은 소요의 강도를 단기간에 얻기 위하여 일반적으로 상압 증기양생을 실시하며, 칼슘-실리케이트의 수열합성반응을 이용할 경우 1차 양생 이후에 오토클레이브 양생이라는 2차 양생도 실시하고 있다. 여기에서 제품의 강도발현에 커다란 영향을 미치는 양생 방법의 경우, 2차 양생 방법에 대한 연구는 각종 연구로 부터 수열반응에 적합한 조건이 구명되는 등 많은 연구가 수행되었으나, 1차 양생 방법에 대한 검토는 아직 미비한 실정이며 생산업체별로 양생 방식을 달리하여 제품을 생산하고 있어 제품의 소요강도 획득에 문제점을 가지고 있다. 이에 본 연구에서는 수열합성 경화체에 있어서 보다 높은 강도를 얻기 위한 1차 양생 방법에 대한 자료를 얻고자 실험적 연구를 수행하였다. 즉 수열합성 경화체에 있어서 1차 양생 방법을 건식과 건/습식 그리고 습식으로 실시한 후에 각각의 시험체에 대하여 수화특성을 알아보기 위하여 SEM, XRD, DT-TGA 및 porosimeter 시험을 실시하였으며, 강도 특성을 알아보기 위하여 압축강도 시험을 실시하였다. 측정 결과, 1차, 2차 양생 후 각 양생조건에 따른 시험체의 압축강도는 건/습식 양생조건이 강도발현에 유리한 것으로 나타났으며, 그 차이는 크지 않은 것을 알 수 있었다. 수화도 분석을 위한 SEM, XRD 및 DT-TGA의 측정 결과, 건/습식 양생조건의 경우가 건식과 습식 양생조건에 비해 가장 많이 수화가 진행된 것을 알 수 있었고, porosimeter의 측정 결과에 있어서도 건/습식 양생조건이 강도특성에 유리한 공극특성을 갖는 것으로 나타났다.

HTPB 바인더가 추진제에 미치는 영향 (Effect of HTPB Binder on Propellant)

  • 김정은;류태하;홍명표;이형진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.504-507
    • /
    • 2017
  • 추진제의 주 바인더로 사용하고 있는 폴리부타디엔 계열인 HTPB(Hydroxyl Terminated Polybutadiene)는 합성 뱃취에 따라 바인더 및 추진제의 경화 속도에 영향을 미치는 현상을 보였다. 이에 각기 다른 뱃취에서 합성된 HTPB의 바인더 특성 분석을 통해 추진제에 적용하여 경화반응 속도 및 기계적 특성을 확인하였다. 최종적으로 이러한 추진제의 경화 반응속도가 추진제 물성에 영향을 미치며, 우수한 물성의 추진제를 제조하기 위해서는 적절한 수준의 바인더의 경화 반응이 필요한 것으로 분석되었다.

  • PDF

광경화성 아크릴 수지의 경화특성에 관한 연구 (Study on the Curing Properties of Photo-curable Acrylate Resins)

  • 김성현;장현석;박선희;송기국
    • 폴리머
    • /
    • 제34권5호
    • /
    • pp.469-473
    • /
    • 2010
  • 광경화성 수지인 아크릴레이트의 경화 특성과 메카니즘에 대하여 Photo-DSC와 FTIR, Raman spectrometer를 이용하여 조사하였다. 아크릴레이트 종류, 관능기 수, 광 세기 등에 따른 경화 속도에 관한 정보는 시간에 따른 Photo-DSC curve에서 계산하였고, FTIR과 Raman을 이용하여 경화 반응의 전환율과 반응 메카니즘을 조사하였다. 광경화 반응에서 산소의 영향을 알아보기 위하여 아크릴레이트 수지와 thiol-ene 수지의 경화과정을 비교하였는데, 공기 중 산소가 아크릴레이트의 라디칼 반응에서 금지제로 작용하여 아크릴레이트 수지는 80% 이하의 전환율을 보인 반면 thiol-ene 수지는 산소가 반응에 영향을 미치지 않는 것을 알 수 있었다.

1-Chlorobutadiene-Butadiene Copolymer의 수가교반응(水架橋反應)에 관한 연구(硏究)(II) (A Study on Curing Reaction of 1-Chlorobutadiene-Butadiene Copolymer by Moisture)

  • 유종선;백남철
    • Elastomers and Composites
    • /
    • 제22권4호
    • /
    • pp.305-313
    • /
    • 1987
  • In this study, as one of the developing ways of the functional elastomer, improvement of the functionality of 1-Chlorobutadiene-Butadiene Copolymer(CB-BR) was attempt through curing reaction by moisture. The curing reaction of CB-BR was determined an use of $\gamma$-Aminopropyltriethoxysilane(APS) and $\gamma$-Aminopropylmethyldiethoxysilane(ADS) as a crosslinking agent with filler at so the uncrosslinked elastomer was exposured in the air and curing reaction by moisture in the air was studied. The results obtained are as follows. 1. APS was more efficient than ADS as a crosslinking agent for CB-BR 2. Optimum amount of APS for moisture cured elastomer was r=1.5(at the ratio of $[APS]/[Cl^*]$) also in case(r=1.5), elastomer formed after soaking $T_{72}$ had similar physical properties with elastomer crosslinked by sulfur and it was very good. 3. Uncrosslinked elastomer(CB-BR+APS+Silica) was easily crosslinked by exposure to the air, and the physical properties was also satisfactory.

  • PDF

고로슬래그의 지오폴리머 축중합반응에 미치는 양생온도의 영향 (Effect of Curing Temperature on Geopolymeric Polycondensation of Blast Furnace Slag)

  • 전창섭;송태웅
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.610-616
    • /
    • 2011
  • The effect of curing temperature on basic geopolymeric reactivity and hardening behaviour of blast furnace slag were investigated using the mixture of pulverized slag and several alkaline solutions of relatively high concentration. For the pastes prepared at several different temperatures between 20$^{\circ}C$ and 90$^{\circ}C$, setting time and heat of reaction were examined while mineralogical and morphological examinations were performed for the hardened paste after curing period at same temperature. The geopolymeric reaction of slag was revealed to be accelerated strongly according to the curing temperature regardless of the sort and concentration of the alkaline solution. The increase of concentration of the alkaline solution within 9M and the existence of silicic ion in the solution also promoted the reaction severely. The mineral component and their ratio of the hardened paste were revealed to be influenced by the chemical species and silicic ion contained in alkaline solution rather than by the curing temperature. The higher temperature and longer period of curing stage were effective for the sustained formation of geopolymer and succeed improvement of density and uniformity of morphology of the final hardened body.

아크릴계 하이솔리드 도료의 Rotation Rheometer에 의한 경화거동 연구 (Curing Behavior by Rotation Rheometer of Acrylic High-Solid Coatings)

  • 양인모;정충호;김태옥;박홍수;박은경
    • 한국응용과학기술학회지
    • /
    • 제18권1호
    • /
    • pp.40-48
    • /
    • 2001
  • Curing reaction was carried out with the acrylic resin (ACR) [n-butyl acrylate/atyrene/2-hydroxyethyl methacrylate/acetoacetoxyethyl methacrylate (AAEM)] synthesized before and a curing agent, hexamethoxymethylmelamine (HMMM). With rotational rheometer, the effect of catalysts on curing rate of acrylic resin/melamine was examined. Among the four catalysts used, p-toluene sulfonic acid showed the highest reactivity, and the optimum amount of catalyst was 0.5 phr. It was observed that in the ACR/HMMM curing reaction, gelation point was lowered with the increasing the amount of AAEM and HMMM in the ACR.

Thermal Curing Behavior and Tensile Properties of Resole Phenol-Formaldehyde Resin/Clay/Cellulose Nanocomposite

  • Park, Byung-Dae;Kadla, John F.
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권2호
    • /
    • pp.110-122
    • /
    • 2012
  • This study investigated the effects of layered clay on the thermal curing behavior and tensile properties of resole phenol-formaldehyde (PF) resin/clay/cellulose nanocomposites. The thermal curing behavior of the nanocomposite was characterized using conventional differential scanning calorimetry (DSC) and temperature modulated (TMDSC). The addition of clay was found to accelerate resin curing, as measured by peak temperature ($T_p$) and heat of reaction (${\Delta}H$) of the nanocomposite’ curing reaction increasing clay addition decreased $T_p$ with a minimum at 3~5% clay. However, the reversing heat flow and heat capacity showed that the clay addition up to 3% delayed the vitrification process of the resole PF resin in the nanocomposite, indicating an inhibition effect of the clay on curing in the later stages of the reaction. Three different methods were employed to determineactivation energies for the curing reaction of the nanocomposite. Both the Ozawa and Kissinger methods showed the lowest activation energy (E) at 3% clay content. Using the isoconversional method, the activation energy ($E_{\alpha}$) as a function of the degree of conversion was measured and showed that as the degree of cure increased, the $E_{\alpha}$ showed a gradual decrease, and gave the lowest value at 3% nanoclay. The addition of clay improved the tensile strengths of the nanocomposites, although a slight decrease in the elongation at break was observed as the clay content increased. These results demonstrated that the addition of clay to resole PF resins accelerate the curing behavior of the nanocomposites with an optimum level of 3% clay based on the balance between the cure kinetics and tensile properties.

무기물이 충진된 에폭시수지의 경화반응과 유변학적 거동에 관한 연구 (Cure Kinetics and chemorology of silica filled DGEBA/Polyxoypropylenediamine epoxy system)

  • 윤은상;이기윤;김대수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 1994년도 추계 학술발표 강연 및 논문 개요집
    • /
    • pp.125-126
    • /
    • 1994
  • The chemorheological changes and kinetics during curing reaction of an silica filled epoxy system (DGEBA with curing agent Polyxoypropylenediamine) were investigated. This study concentrates on the influence of silica on the reaction kinetics and rheological behavior of the eopxy system. The concentration of the filler was varied 0~200phr. Curing behavior of the silica filled epoxy system was measured at various heating rates with DSC. Conversion was also measured by integrating the obtained DSC curve and Kinetic parameters measured by using the nonlinear regression method. DSC experiments showed that the presence of silica was found to accelerate the progress of the curing reaction and of reduce the heat of reaction compared with that of unfilled epoxy systems . Rheological experiments were conducted on a Physica by using a disposable parallel plate fixture. Material properites were measured such as the elastic modulus(G′), the loss modulus(G"), the loss tangent(tan $\delta$), and the viscosity was at the initial stahe, and the more the silica filler was added, and the lower the gel temperature was in the epoxy system. In this study it is concluded that the curing of the silica filled epoxy system was found to be accelerated, as silica was added to the epoxy compound.

  • PDF

Curing Behavior of Epoxy Resins Using Aminolysis Products of Waste Polyurethanes as Hardeners

  • Lee, Dai-Soo;Hyun, Song-Won;Seo, Seung-Wook;Kim, Kyoung-Jong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.738-741
    • /
    • 2001
  • We carried out aminolyses of various rigid polyurethane foams (PUFs) using diethylene triamine and studied application of the aminolysis products as hardners of epoxy resins. Diglycidyl ether of bisphenol A was used for the study on the curing behavior of epoxy resin with the aminolysis product employing differential scanning calorimeter. Curing reaction of the epoxy resin is generally known to be autocatalytic second order reaction. We found that the curing reaction of the epoxy resin with the aminolysis product of rigid PUF did not show autocatalytic characteristics but followed the n-th order kinetics. The activation energy of the curing reaction of the epoxy resin with the aminolysis product of rigid PUF made from sugar based polyol was slightly lower than that of the epoxy resin with aminolysis product of rigid with made from amine based polyol.

  • PDF