Browse > Article
http://dx.doi.org/10.5658/WOOD.2012.40.2.110

Thermal Curing Behavior and Tensile Properties of Resole Phenol-Formaldehyde Resin/Clay/Cellulose Nanocomposite  

Park, Byung-Dae (Department of Wood Science and Technology, Kyungpook National University)
Kadla, John F. (Department of Wood Science, The University of British Columbia)
Publication Information
Journal of the Korean Wood Science and Technology / v.40, no.2, 2012 , pp. 110-122 More about this Journal
Abstract
This study investigated the effects of layered clay on the thermal curing behavior and tensile properties of resole phenol-formaldehyde (PF) resin/clay/cellulose nanocomposites. The thermal curing behavior of the nanocomposite was characterized using conventional differential scanning calorimetry (DSC) and temperature modulated (TMDSC). The addition of clay was found to accelerate resin curing, as measured by peak temperature ($T_p$) and heat of reaction (${\Delta}H$) of the nanocomposite’ curing reaction increasing clay addition decreased $T_p$ with a minimum at 3~5% clay. However, the reversing heat flow and heat capacity showed that the clay addition up to 3% delayed the vitrification process of the resole PF resin in the nanocomposite, indicating an inhibition effect of the clay on curing in the later stages of the reaction. Three different methods were employed to determineactivation energies for the curing reaction of the nanocomposite. Both the Ozawa and Kissinger methods showed the lowest activation energy (E) at 3% clay content. Using the isoconversional method, the activation energy ($E_{\alpha}$) as a function of the degree of conversion was measured and showed that as the degree of cure increased, the $E_{\alpha}$ showed a gradual decrease, and gave the lowest value at 3% nanoclay. The addition of clay improved the tensile strengths of the nanocomposites, although a slight decrease in the elongation at break was observed as the clay content increased. These results demonstrated that the addition of clay to resole PF resins accelerate the curing behavior of the nanocomposites with an optimum level of 3% clay based on the balance between the cure kinetics and tensile properties.
Keywords
cellulose; clay; cure kinetics; nanocomposite; resole phenolic resin; modulated differential scanning calorimetry; tensile properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Byun, H. Y., M. H. Choi, and I. J. Chung. 2001. Synthesis and Characterization of resol type phenolic resin/layered silicate nanocomposite. Chem. Mater. 13: 4221-4226.   DOI   ScienceOn
2 Van Assche, G., A. Van Hemelrijck, H. Rahier, and B. Van Mele. 1996. Modulated differential scanning calorimetry: Non-isothermal cure, vitrification, and devitrification of thermosetting systems. Thermochim. Acta, 286: 209-224.   DOI   ScienceOn
3 Van Assche, G., A. Van Hemelrijck, H. Rahier, and B. Van Mele. 1997. Modulated temperature differential scanning calorimetry; Consideration for aquantitative study of thermosetting systems. J. Therm. Anal. 49: 443-447.   DOI   ScienceOn
4 Vyazovkin, S. and N. Sbirrazzuoli. 2006. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol. Rapid Comm. 27: 1515-1532.   DOI   ScienceOn
5 Wang, J., M.-P.G. Laborie, and M. P. Wolcott. 2005. Comparison of model-free kinetic methods for modeling the cure kinetics of commercial phenol-formaldehyde resins. Thermochim. Acta 439: 68-73.   DOI   ScienceOn
6 Wang, H., T. Zhao, Y. Y and Y. Yu. 2004. Synthesis of resol-layered Silicate nanocomposite by reaction exfoliation with acid-modified montmorillonite, J. Appl. Polym. Sci. 92: 791-797.   DOI   ScienceOn
7 Wu, Z., C. Zhou, and R. Qi. 2002. The preparation of phenolic resin/montmorillonite nanocomposite by suspension condensation polymerization and their morphology. Polym. Compos. 23: 634-646.   DOI   ScienceOn
8 Wunderlich, B., Y. Jin, and A. Boiler. 1994. Mathematical description of differential scanning calorimetry based on periodic temperature modulation, Thermochim. Acta 238: 277-293.   DOI   ScienceOn
9 Yong, R. N., S. Desjardins, J. P. Farant, and P. Simon. 1997. Influence of pH and exchangeable cation on oxidation of methylphenols by a montmorillonite clay. Appl. Clay Sci. 12: 93-110.   DOI   ScienceOn
10 Ray, S. S. and M. Okamoto. 2003. Polymer/ layered silicate nanocomposite: a review from preparation to processing. Prog. Polym. Sci. 28: 1539-1641.   DOI   ScienceOn
11 Reading, M., D. Elliott, and V. L. Hill. 1992. Some aspects of the theory and practice of modulated differential scanning calorimetry. In: Proceedings of the 21st NATAS Conference, pp. 145-150.
12 Reading, M. 1993. Modulated differential scanning calorimetry- a new way forward in materials characterisation. Trends Polym. Sci. 8: 248-253.
13 Tasan, C. C. and C. C. Kaynak. 2009. Mechanical performance of resol type phenolic resin/ layered silicate nanocomposite. Polym. Compos. 30: 343-350.   DOI   ScienceOn
14 Reading, M., D. Elliot, and V. L. Hill. 1993. A new approach to the calorimetric investigation of physical and chemical transitions. J. Thermal. Anal. 40: 949-955.   DOI   ScienceOn
15 Reading, M., A. Luget, and R. Wilson. 1994. Modulated differential scanning calorimetry. Thermochim. Acta, 238: 295-307.   DOI   ScienceOn
16 Shen, J., W. Huang, L. Wu, Y. Hu, and M. Ye. 2007. Thermo-physical properties of epoxy nanocomposite reinforced with aminofunctiona lized multi-walled carbon nanotubes. Composites: Part A. 38: 1331-1336.   DOI   ScienceOn
17 Tejado A., G. Kortaberria, J. M. Echeverria, and I. Mondragon. 2008. Isoconversional kinetic analysis of novolac-type lignophenolic resin cure. Thermchim. Acta 471: 80-85.   DOI   ScienceOn
18 Tjong, S. C. 2006. Synthesis and Structure Property Characteristics of Clay Polymer Nanocomposite. In: Tjong, S.C. (ed), Nano-crystalline Materials, Elsevier Ltd., Chapter 10, pp: 311-348.
19 Usuki, A., Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito. 1993. Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8: 1179-1184.   DOI   ScienceOn
20 Van Assche, G., A. Van Hemelrijck, H. Rahier, and B. Van Mele. 1995. Modulated differential scanning calorimetry: isothermal cure and vitrification of thermosetting systems. Thermo- chim. Acta, 268: 121-142.   DOI   ScienceOn
21 Kaynak, C. and C. C. Tasan. 2006. Effects of production parameters on the structure of resol type phenolic resin/layered silicate nano- composite. Euro. Polym. J. 42: 1908-1921.   DOI   ScienceOn
22 Kissinger, H. E. 1957. Reaction kinetics in differential thermal analysis. Anal. Chem. 29: 1702-1706.   DOI
23 Ozawa, O. A. 1965. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. of Japan 38: 1881-1886.   DOI
24 Kojima, Y., A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito. 1993. Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with e-caprolactam. J. Polym. Sci. Part A: Polym. Chem. 31: 983-986.
25 Lopez, M., M. Blanco, A. Vazquez, N. Gabilondo, A. Arbelaiz, J. M. Echeverria, and I. Mondragon. 2008. Curing characteristics of resol- layered silicate nanocomposites. Thermchim. Acta. 467: 73-79.   DOI   ScienceOn
26 Lopez, M., M. Blanco, A. Vazquez, J. A. Ramos, A. Arbelaiz, N. Gabilondo, J. M. Echeverria, and I. Mondragon. 2009. Isoconversional kinetic analysis of resol-clay nanocomposite. J. Therm. Anal. Cal. 96: 567-573.   DOI   ScienceOn
27 Park, B. D., B. Riedl, H. J. Bae, and Y. S. Kim. 1999. Differential scanning calorimetry of phenol-formaldehyde adhesives. J. Wood Chem. Tech. 19: 265-286.   DOI
28 Park, B. D., B. Riedl, Y. S. Kim, and W. T. So. 2002. Effect of synthesis parameters on thermal behavior of phenol-formaldehyde resole resin. J. Appl. Polym. Sci. 83: 1415-1424.   DOI   ScienceOn
29 Park, J. H. and S. C. Jana. 2003. Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposite. Macromol. 36: 2758-2768.   DOI   ScienceOn
30 Pavlidou, S. and C. D. Papaspyrides. 2008. A review on polymerlayered silicate nanocomposite. Prog. Polym. Sci. 33: 1119-1198.   DOI   ScienceOn
31 Prolongo, S. G., M. Campo, M. R. Gude, R. Chaos-Moran, and A. Urena. 2009. Thermophysical characterization of epoxy resin reinforced by amino-functionalized carbon naonofibers. Composite Sci. Tech. 69: 349-357.   DOI   ScienceOn
32 Cheng, Q., S. Wang, and T. G. Rials. 2009. Poly(vinyl alcohol) nanocomposite reinforced with cellulose fibrils isolated by high intensity ultrasonication. Composites: Part A. 40: 218-224.
33 Fraga, I., S. Montserrat, and J. M. Hutchison. 2008. Vitrification during the isothermal cure of thermosets. Part I. An investigation using TOPEM, a new temperature modulated technique. J. Therm. Anal. Cal. 91: 687-695.   DOI   ScienceOn
34 Choi, M. H., I. J. Chung, and J. D. Lee. 2000. Morphology and curing behaviors of phenolic resin-layered silicate nanocomposite prepared by melt intercalation. Chem. Mater. 12: 2977-2983.   DOI   ScienceOn
35 Choi, M. H. and I. J. Chung. 2003. Mechanical and thermal properties of phenolic resin-layered silicate nanocomposite synthesized by melt intercalation. J. Appl. Polym. Sci. 90: 2316-2321.   DOI   ScienceOn
36 Coleman, J. N., U. Khan, W. J. Blau, and Y. K. Gun'ko. 2006. Small but strong: A review of the mechanical properties of carbon nanotube- polymer composites, Carbon 44: 1624-1652.   DOI   ScienceOn
37 Gill, P. S., S. R. Sauerbrunn, and M. Reading. 1993. Modulated differential scanning calorimetry. J. Thermal. Anal. 40: 931-939.   DOI   ScienceOn
38 He, G. B., B. Riedl, and A. Ait-Kadi. 2003. Model-free kinetics: Curing behavior of phenol formaldehyde resins by differential scanning calorimetry. J. Appl. Polym. Sci. 87: 433-440.   DOI   ScienceOn
39 He, G. B. and B. Riedl. 2004. Curing kinetics of phenol formaldehyde resin and wood-resin interactions in the presence of wood substrates. Wood Sci. Tech. 38: 69-81.   DOI
40 Ingram, S., I. Rhoney, J. J. Liggat, N. E. Hudson, and R. A. Pethrick. 2007. Some factors influencing exfoliation and physical property enhancement in clay epoxy resins based on diglycidyl ethers of bisphenol A and F. J. Appl.Polym. Sci. 106: 5-19.   DOI   ScienceOn
41 McIntyre, S., I. Kaltzakorta, J. J. Liggat, R. A. Pethrick, and I. Rhoney. 2005. Influence of the epoxy structure on the physical properties of epoxy resin nanocomposite, Ind. Eng. Chem. Res. 44: 8573-8579.   DOI   ScienceOn
42 Alonso, M. V., M. Oliet, J. M. Perez, F. Rodriguez, and J. Echeverria. 2004. Determination of curing kinetic parameters of lignin-phenol- formaldehyde resol resins by several dynamic differential scanning calorimetry methods. Thermochim. Acta 419: 161-167.   DOI   ScienceOn