• 제목/요약/키워드: Curing Environment

검색결과 246건 처리시간 0.022초

에폭시 아크릴레이트의 전자선 영향 평가 (Characterization of Electron Beam Cured Epoxy Acrylate)

  • 신진욱;오병환;고금진;전준표;강필현
    • 방사선산업학회지
    • /
    • 제4권3호
    • /
    • pp.271-276
    • /
    • 2010
  • Epoxy resin has wide application in various industrial fields because of their good mechanical strength, superiority adhesion and low shrinkage etc. And the typical curing method for epoxy resins is thermal and press compaction. However, a curing method was used electron beam process in this study. Epoxy acrylate was fabricated from mixture of epoxy, acrylic acid, tetraphenylporphyrin (TPP) and hydroquinone monomethyl ether (MEHQ) with mole ratios. Then electron beam irradiation effect on the curing of the epoxy acrylate resin was investigated various absorption dose in nitrogen atmospheres at room temperature. The dynamic mechanical and thermal properties of the irradiated epoxy acrylate resins were characterized using dynamic mechanical analysis (DMA) and thermogravimetric analyzer (TGA). And the tensile and flexural strength were measured by an universal tensile machine (UTM).

극저온 조건에서의 양생방법 변화에 따른 실구조체 콘크리트의 강도발현 특성 (Strength Development of Mock-up Concrete Structure subjected to Extremely Low Temperature Condition Due to Curing Methods)

  • 정은봉;정상현;안상구;고경택;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.47-49
    • /
    • 2012
  • Under this study, the characteristics of concrete intensity condition following the curing method under the extremely low temperature environment have been contemplated, and as a result, in the event of insulation + heat cable curing, the intensity and accumulated temperature accomplishment period is required for two times of requiring initial frost damage prevention than the case of heating + heat insulation curing method due to the insufficient calories supplied in general.

  • PDF

X-ray CT monitoring of macro void development in mortars exposed to sulfate attack

  • Tekin, Ilker;Birgul, Recep;Aruntas, Huseyin Y.
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.367-376
    • /
    • 2018
  • This study reports the results of nondestructive monitoring of macro void developments in mortars manufactured with both ordinary Portland cement and sulfate resistant cement. Two types of curing were utilized; tap water curing and another curing environment that contains 5% $Na_2(SO_4)$ solution. Being the primary objective of this study, macro void developments of the mortar specimens were monitored by X-ray Medical Computerized Tomography. Compressive strength tests and water absorption tests were conducted on specimens that were kept in both curing environments for a duration of 560 days. Data analyses yielded consistent results among the three tests used in this experimental study. Macro void ratios of mortars decreased at the beginning of experiments for a certain period; afterwards, macro void ratios increased. The objective of this study was accomplished as anticipated since X-CT image analysis was able to nondestructively monitor macro void development process in cement mortars.

광발열 소재를 활용한 1중 버블시트의 발열성능 검토 (A Study on the Heat Performance of Single Layered Bubble Sheet Using Phothothermal Materials)

  • 이현직;후윈야오;이승민;한준희;김종;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.223-224
    • /
    • 2023
  • This study compared the curing temperature of the bubble sheet and the photothermal insulation sheet incorporating carbon-based photothermal materials to reduce concrete curing time as a part of shortening construction period. As a result of the experiment, bubble sheet with photothermal material B is judged to be effective in shortening the curing time under hot environment.

  • PDF

타이어 제조공장 가류공정의 온열환경 개선에 관한 연구 (Improvement of hot work environment in the curing processes of a tire manufacturing company)

  • 임정호;김태형
    • 한국산업보건학회지
    • /
    • 제21권1호
    • /
    • pp.1-10
    • /
    • 2011
  • Generally, the tire curing process is the process in which the sulfur is added and subsequently the tire is heated to give the tire elasticity. In this process, all kinds of the chemicals in the tire are emitted with a lot of heat. The chemical fume and heat aggravate the work environment. To solve this problem, 92 local exhaust ventilators and 8 gravity ventilators were used, but not satisfactory yet. Preliminary survey showed that the temperatures in the process were very high: 30.3, 32.9 and $37.2^{\circ}C$ at 2, 4 and 6m above the ground level, respectively in the winter (outside temperature was $2^{\circ}C$). It can be imagined that the process is severely hot in the summer time. The higher temperature distribution in the higher space tells us that the hot plume could not be removed with the existing ventilation systems. Therefore, in this study, some alternative ventilation systems were designed. The partitions were used to contain the hot plume to increase the capture efficiency. The gravity ventilators were newly designed to improve the extraction efficiency of hot fume. To satisfy the balance of pressure in the curing process, some supply air system was introduced by renewing the existing air conditioning system. Many alternative solutions were evaluated by using computational fluid dynamics modelling. The best and applicable solution was selected and the existing ventilation system was modified. After implementing the new ventilation system, the hot environment was much improved. The temperature reduction in the curing process was about $6.4^{\circ}C$.

칼슘실리케이트 무기 단열소재의 양생기간에 따른 물리 특성 (Physical Properties of Calcium Silicate Inorganic Insulation Depending on Curing Time)

  • 박재완;추용식;정재현
    • 한국건축시공학회지
    • /
    • 제16권6호
    • /
    • pp.529-534
    • /
    • 2016
  • 칼슘실리케이트계 무기단열소재는 주원료로 시멘트를 90%를 사용하는 다공성 무기단열소재이다. 기존 무기단열소재와 달리 고온의 수화반응 처리가 없기 때문에 가격이 저렴하며, 불연소재의 원료를 사용하여 화제의 위험성도 적다. 칼슘실리케이트 단열소재는 $0.13g/cm^3$의 밀도와 0.050W/mK이하의 우수한 열전도도를 갖는 단열소재이다. 칼슘실리케이트 단열소재는 경량화 될수록 내부 기포를 다량 함유해야 하며 기포를 다량 함유함에 따라 단열성 또한 우수해진다. 본 연구에서는 다량의 기포를 함유하며 일정강도발현을 목표로, 칼슘실리케이트계 무기단열소재의 주성분인 시멘트가 수화반응에 따라 초기 및 장기강도발현하는 특성을 이용하여 칼슘실리케이트계 무기단열소재에 적용하여 물리적 특성을 알아보고자 하였다.

광개시제 특성에 따른 터치 패널용 UV 경화형 Ag 페이스트의 물성 연구 (A Study on Properties of UV-Curing Silver Paste for Touch Panel by Photoinitiator Characteristic)

  • 남수용;구용환;김성빈
    • 한국인쇄학회지
    • /
    • 제29권2호
    • /
    • pp.1-13
    • /
    • 2011
  • The recent spotlight on electronic touch-screen display, a rapid breakthrough in the information society is evolving. Touch panel input device such as a keyboard or mouse without the use of, the on-screen character or a specific location or object on the person's hand touches a particular feature to identify the location of a panel is to be handled. The touch screen on the touch panel is used in the Ag paste is used mostly for low-curable paste. The thermal-curing paste according to the drying process of thermal energy consumption and improve the working environment of organic solvents have problems. In this study, Ag paste used in the non-thermal curing friendly and cost-effective UV curable paste was prepared. Current commercially available thermal-curable binder, was used instead of the flow characteristics of UV-curable oligomers and monomers with functional groups to give a single conductive Ag paste with the addition of a pattern could be formed. Ag paste as a result, thermal-curing adhesive, hardness, resistance and excellent reproduction of fine patterns and was available with screen printing environmentally friendly could see its potential as a patterning technology.

양생환경 및 수중펌프압송이 고강도 그라우트의 강도에 미치는 영향 (The Effects of Curing Environment and Submerged Pump Pressure on the Strength of High-Strength Grout)

  • 김범휘;손다솜;이종구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.191-192
    • /
    • 2023
  • In recent years, the use of high-strength grout has gained popularity in offshore wind power generation complexes for facility foundations and bridges. These marine wind farms require support for horizontal loads from wind and waves. To ensure the strength of the grout produced in environments similar to the actual placing site, this study investigated the curing of high-strength grout discharged through pump pressure in various environments, and examined the difference in strength according to different variables. Compressive strength measurements revealed that the core specimen collected from the bottom (3cm) and uppermost (50cm) of the specimen exhibited lower strength compared to other height specimens, while the core specimen obtained from the corner exhibited lower strength compared to the center. These findings suggest that the strength difference between the center and the corner is more pronounced when curing at low temperatures. This effect is greater than the strength reduction that typically occurs during low-temperature curing, and thus, necessitates careful attention in similar construction environments.

  • PDF

Geotechnical behaviour of nano-silica stabilized organic soil

  • Kannan, Govindarajan;Sujatha, Evangelin Ramani
    • Geomechanics and Engineering
    • /
    • 제28권3호
    • /
    • pp.239-253
    • /
    • 2022
  • Suitable techniques to stabilize organic soil and improve its engineering behaviour are in demand. Despite various alternatives, nano-additives proved to be an effective stabilizer owing to their strength enhancing properties. The study focuses on using nano-silica as a potential stabilizer to improve organic silt. Soil was treated with four dosages of nano-silica namely 0.2%, 0.4%, 0.6% and 0.8% of dry weight of the soil. Nano-silica treated soil showed a strength increase of nearly 25% at a dosage of 0.4% after curing for two hours. Strength of the treated soil improved with age. Strength improved by nearly 62.9% after 28 days of curing and 221.4% after 180 days of curing due to formation of Calcium - Silicate - Hydrate (CSH) gel in the soil matrix. Dosage of 0.6% nano-silica is observed to be the optimum dosage. Coefficient of permeability and compression index showed an increase by 13.32 and 5.5 times respectively owing to aggregation of particles and creation of void spaces as visualized from the scanning electron micrographs. Further model foundation study and numerical parametric studies using PLAXIS 2D indicate that optimized and economic results can be obtained by varying the additive dosage with depth.

Numerical simulation on integrated curing-leaching process of slag-blended cement pastes

  • Xiang-Nan Li;Xiao-Bao Zuo;Yu-Xiao Zou;Guang-Pan Zhou
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.45-60
    • /
    • 2023
  • Concrete in water environment is easily subjected to the attack of leaching, which causes its mechanical reduction and durability deterioration, and the key to improving the leaching resistance of concrete is to increase the compaction of its microstructure formed by the curing. This paper performs a numerical investigation on the intrinsic relationship between microstructures formed by the hydration of cement and slag and leaching resistance of concrete in water environment. Firstly, a shrinking-core hydration model of blended cement and slag is presented, in which the interaction of hydration process of cement and slag is considered and the microstructure composition is characterized by the hydration products, solution composition and pore structure. Secondly, based on Fick's law and mass conservation law, a leaching model of hardened paste is proposed, in which the multi-species ionic diffusion equation and modified Gérard model are established, and the model is numerically solved by applying the finite difference method. Finally, two models are combined by microstructure composition to form an integrated curing-leaching model, and it is used to investigate the relationship between microstructure composition and leaching resistance of slag-blended cement pastes.