• Title/Summary/Keyword: Cumulative Distribution Function

Search Result 300, Processing Time 0.03 seconds

Analysis of Rainfall-Runoff Characteristics on Bias Correction Method of Climate Change Scenarios (기후변화 시나리오 편의보정 기법에 따른 강우-유출 특성 분석)

  • Kum, Donghyuk;Park, Younsik;Jung, Young Hun;Shin, Min Hwan;Ryu, Jichul;Park, Ji Hyung;Yang, Jae E;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.241-252
    • /
    • 2015
  • Runoff behaviors by five bias correction methods were analyzed, which were Change Factor methods using past observed and estimated data by the estimation scenario with average annual calibration factor (CF_Y) or with average monthly calibration factor (CF_M), Quantile Mapping methods using past observed and estimated data considering cumulative distribution function for entire estimated data period (QM_E) or for dry and rainy season (QM_P), and Integrated method of CF_M+QM_E(CQ). The peak flow by CF_M and QM_P were twice as large as the measured peak flow, it was concluded that QM_P method has large uncertainty in monthly runoff estimation since the maximum precipitation by QM_P provided much difference to the other methods. The CQ method provided the precipitation amount, distribution, and frequency of the smallest differences to the observed data, compared to the other four methods. And the CQ method provided the rainfall-runoff behavior corresponding to the carbon dioxide emission scenario of SRES A1B. Climate change scenario with bias correction still contained uncertainty in accurate climate data generation. Therefore it is required to consider the trend of observed precipitation and the characteristics of bias correction methods so that the generated precipitation can be used properly in water resource management plan establishment.

Quantitative Evaluation of Geotextile Void Structures Using Digital Image Analysis (디지털 이미지 분석을 이용한 지오텍스타일 공극 분포의 정량화)

  • Kim, Duhwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • This paper presents results from a study undertaken to quantitatively evaluate the geotextile pore sizes using optical image analysis. The evaluation was conducted by observing surfaces of coupons cut from resin-impregnated specimens of geotextile-geomembrane layered under various load conditions. Stereological concepts were applied to collect representative specimens from a series of laboratory tests. The sizes of voids enclosed by filaments were expressed in terms of the largest inscribing opening size (LIOS) distribution. The opening diameter corresponding to the 50% cumulative frequency decreased by about 45mm as the load increased from 10 to 300kPa and recovered to about 90% of its initial state on unloading back to 10kPa. The average void size was reduced by 32 and 16.5% as the geotextile was sheared against a textured geomembrane under normal stresses of 100 and 300kPa, respectively. The results showed how the LIOS distribution varied as a function of normal stress and interface shear displacement against a smooth and a textured geomembrane surfaces.

Comparison of parametric and nonparametric hazard change-point estimators (모수적과 비모수적 위험률 변화점 통계량 비교)

  • Kim, Jaehee;Lee, Sieun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1253-1262
    • /
    • 2016
  • When there exists a change-point in hazard function, it should be estimated for exact parameter or hazard estimation. In this research, we compare the hazard change-point estimators. Matthews and Farewell (1982) parametric change-point estimator is based on the likelihood and Zhang et al. (2014) nonparametric estimator is based on the Nelson-Aalen cumulative hazard estimator. Simulation study is done for the data from exponential distribution with one hazard change-point. The simulated data generated without censoring and the data with right censoring are considered. As real data applications, the change-point estimates are computed for leukemia data and primary biliary cirrhosis data.

Development of Fragility Curves for Seismic Stability Evaluation of Cut-slopes (지진에 대한 안전성 평가를 위한 깎기비탈면의 취약도 곡선 작성)

  • Park, Noh-Seok;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.29-41
    • /
    • 2017
  • There are uncertainties about the seismic load caused by seismic waves, which cannot be predicted due to the characteristics of the earthquake occurrence. Therefore, it is necessary to consider these uncertainties by probabilistic analysis. In this paper, procedures to develop a fragility curve that is a representative method to evaluate the safety of a structure by stochastic analysis were proposed for cut slopes. Fragility curve that considers uncertainties of soil shear strength parameters was prepared by Monte Carlo Simulation using pseudo static analysis. The fragility curve considering the uncertainty of the input ground motion was developed by performing time-history seismic analysis using selected 30 real ground input motions and the Newmark type displacement evaluation analysis. Fragility curves are represented as the cumulative probability distribution function with lognormal distribution by using the maximum likelihood estimation method.

Study on Fire.Explosion Accidents Prediction Model Development of LPG Vaporizer (LPG 기화기의 화재.폭발사고 예측모델개발에 관한 연구)

  • Ko, Jae-Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.28-36
    • /
    • 2010
  • We have garnered 3,593 data of gas accidents reported for 12 years from 1995, and then analyzed the LPG vaporizer accidents according to their types and causes based on the classified database. According to the results the gas rupture has been the most common accident followed by the release, explosion and then fire accidents, the most frequent accident-occurring sub-cause is LPG check floater faults. In addition, we have applied the Poisson Probability Functions to predict the most-likely probabilities of fire, explosion, release and rupture with the LPG vaporizer in the upcoming 5 years. In compliance with Poisson Probability Functions results, in the item which occurs below 3 "LPG-Vaporizer-Fire", in the item which occurs below 5 "LPG-Vaporizer-Products Faults-Check Floater" and the item which occurs below 10 appeared with "LPG-Vaporizer-Products Faults". From this research we have assured the successive database updating will highly improve the anticipating probability accuracy and thus it will play a key role as a significant safety- securing guideline against the gas disasters.

Geostatistical Simulation of Compositional Data Using Multiple Data Transformations (다중 자료 변환을 이용한 구성 자료의 지구통계학적 시뮬레이션)

  • Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.69-87
    • /
    • 2014
  • This paper suggests a conditional simulation framework based on multiple data transformations for geostatistical simulation of compositional data. First, log-ratio transformation is applied to original compositional data in order to apply conventional statistical methodologies. As for the next transformations that follow, minimum/maximum autocorrelation factors (MAF) and indicator transformations are sequentially applied. MAF transformation is applied to generate independent new variables and as a result, an independent simulation of individual variables can be applied. Indicator transformation is also applied to non-parametric conditional cumulative distribution function modeling of variables that do not follow multi-Gaussian random function models. Finally, inverse transformations are applied in the reverse order of those transformations that are applied. A case study with surface sediment compositions in tidal flats is carried out to illustrate the applicability of the presented simulation framework. All simulation results satisfied the constraints of compositional data and reproduced well the statistical characteristics of the sample data. Through surface sediment classification based on multiple simulation results of compositions, the probabilistic evaluation of classification results was possible, an evaluation unavailable in a conventional kriging approach. Therefore, it is expected that the presented simulation framework can be effectively applied to geostatistical simulation of various compositional data.

A Bayesian Approach to Geophysical Inverse Problems (베이지안 방식에 의한 지구물리 역산 문제의 접근)

  • Oh Seokhoon;Chung Seung-Hwan;Kwon Byung-Doo;Lee Heuisoon;Jung Ho Jun;Lee Duk Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.262-271
    • /
    • 2002
  • This study presents a practical procedure for the Bayesian inversion of geophysical data. We have applied geostatistical techniques for the acquisition of prior model information, then the Markov Chain Monte Carlo (MCMC) method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter.

Threshold Estimation of Generalized Pareto Distribution Based on Akaike Information Criterion for Accurate Reliability Analysis (정확한 신뢰성 해석을 위한 아카이케 정보척도 기반 일반화파레토 분포의 임계점 추정)

  • Kang, Seunghoon;Lim, Woochul;Cho, Su-Gil;Park, Sanghyun;Lee, Minuk;Choi, Jong-Su;Hong, Sup;Lee, Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.163-168
    • /
    • 2015
  • In order to perform estimations with high reliability, it is necessary to deal with the tail part of the cumulative distribution function (CDF) in greater detail compared to an overall CDF. The use of a generalized Pareto distribution (GPD) to model the tail part of a CDF is receiving more research attention with the goal of performing estimations with high reliability. Current studies on GPDs focus on ways to determine the appropriate number of sample points and their parameters. However, even if a proper estimation is made, it can be inaccurate as a result of an incorrect threshold value. Therefore, in this paper, a GPD based on the Akaike information criterion (AIC) is proposed to improve the accuracy of the tail model. The proposed method determines an accurate threshold value using the AIC with the overall samples before estimating the GPD over the threshold. To validate the accuracy of the method, its reliability is compared with that obtained using a general GPD model with an empirical CDF.

A Study on the Traffic Patterns of Dangerous Goods Carriers in Busan North and Gamcheon Port (부산 북항·감천항의 위험화물운반선 통항패턴에 관한 연구)

  • Kim, Jong-Kwan;Kim, Se-Won;Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • As a preliminary study of enter or leaving traffic patterns of the Korea main port, port Management Information System (Port-MIS) data was used to check the volume of vessels entering and leaving the port of Busan, and three consecutive days from each seasons were selected for study. Selected 12-day General Information Center on Maritime Safety & Security (GICOMS) data was also used to analyze the traffic pattern in the main traffic lane of Busan port for dangerous goods carrier. Also, the distance between dangerous goods carriers and Oryukdo breakwater of east breakwater in the main traffic lane was analyzed. Collision probability was estimated using the cumulative probability distribution function of the normal distribution for the maritime traffic safety audit scheme based on the assumption that a ship's trajectory has a normal distribution for a section of the route. However, in case of entry or leaving thorough the Oryukdo breakwater and entry thorough the east breakwater, ship's sailing trajectories were revealed not to follow a normal distribution via regularity testing using a KS-test and SW-test. Especially in the north port, the tendency of the right side of the ship to pass was remarkable. It is desirable to develop a traffic model suitable for the characteristics of the port rather than to apply general traffic theories, and to apply this model to a maritime traffic safety diagnosis, so further research is needed.

Comparison of ANN model's prediction performance according to the level of data uncertainty in water distribution network (상수도관망 내 데이터 불확실성에 따른 절점 압력 예측 ANN 모델 수행 성능 비교)

  • Jang, Hyewoon;Jung, Donghwi;Jun, Sanghoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1295-1303
    • /
    • 2022
  • As the role of water distribution networks (WDNs) becomes more important, identifying abnormal events (e.g., pipe burst) rapidly and accurately is required. Since existing approaches such as field equipment-based detection methods have several limitations, model-based methods (e.g., machine learning based detection model) that identify abnormal events using hydraulic simulation models have been developed. However, no previous work has examined the impact of data uncertainties on the results. Thus, this study compares the effects of measurement error-induced pressure data uncertainty in WDNs. An artificial neural network (ANN) is used to predict nodal pressures and measurement errors are generated by using cumulative density function inverse sampling method that follows Gaussian distribution. Total of nine conditions (3 input datasets × 3 output datasets) are considered in the ANN model to investigate the impact of measurement error size on the prediction results. The results have shown that higher data uncertainty decreased ANN model's prediction accuracy. Also, the measurement error of output data had more impact on the model performance than input data that for a same measurement error size on the input and output data, the prediction accuracy was 72.25% and 38.61%, respectively. Thus, to increase ANN models prediction performance, reducing the magnitude of measurement errors of the output pressure node is considered to be more important than input node.