DOI QR코드

DOI QR Code

정확한 신뢰성 해석을 위한 아카이케 정보척도 기반 일반화파레토 분포의 임계점 추정

Threshold Estimation of Generalized Pareto Distribution Based on Akaike Information Criterion for Accurate Reliability Analysis

  • 강승훈 (한양대학교 대학원 자동차공학과) ;
  • 임우철 (한양대학교 대학원 자동차공학과) ;
  • 조수길 (한양대학교 대학원 자동차공학과) ;
  • 박상현 (한양대학교 대학원 자동차공학과) ;
  • 이민욱 (선박해양플랜트연구소 해양플랜트산업기술센터) ;
  • 최종수 (선박해양플랜트연구소 해양플랜트연구부) ;
  • 홍섭 (선박해양플랜트연구소 해양플랜트산업기술센터) ;
  • 이태희 (한양대학교 대학원 자동차공학과)
  • Kang, Seunghoon (Dept. of Automotive Engineering, Graduate School, Hanyang Univ.) ;
  • Lim, Woochul (Dept. of Automotive Engineering, Graduate School, Hanyang Univ.) ;
  • Cho, Su-Gil (Dept. of Automotive Engineering, Graduate School, Hanyang Univ.) ;
  • Park, Sanghyun (Dept. of Automotive Engineering, Graduate School, Hanyang Univ.) ;
  • Lee, Minuk (Technology Center for Offshore Plant Industries, Korea Research Institute of Ships and Ocean Engineering) ;
  • Choi, Jong-Su (Offshore Plant Research Division, Korea Research Institute of Ships and Ocean Engineering) ;
  • Hong, Sup (Technology Center for Offshore Plant Industries, Korea Research Institute of Ships and Ocean Engineering) ;
  • Lee, Tae Hee (Dept. of Automotive Engineering, Graduate School, Hanyang Univ.)
  • 투고 : 2014.09.04
  • 심사 : 2014.10.30
  • 발행 : 2015.02.01

초록

공학분야의 신뢰성 해석은 점점 더 높은 신뢰도 영역에 대한 확률밀도함수의 예측을 요구한다. 따라서 높은 신뢰도를 정확하게 해석하기 위해 분포의 꼬리부분을 정확하게 표현해야 한다. 최근 들어 꼬리부분에 대한 표본만을 이용해 꼬리 모형을 생성하여 신뢰도를 추정할 수 있는 방법인 일반화파레토 분포에 대한 연구가 활발히 진행되고 있다. 하지만 기존의 연구에서는 부정확한 임계점 추정으로 꼬리부분에서 신뢰도의 정확도가 떨어진다. 따라서 본 논문에서는 아카이케 정보척도를 이용하여 임계점을 정확하고 강건하게 추정하고 이를 통해 꼬리 모형의 정확도를 향상시키는 아카이케 정보척도 기반 일반 화파레토 분포 기법을 제안한다. 또한 제안하는 기법을 이용한 신뢰성 해석을 수행하여 정확도가 향상된 신뢰성 해석 결과를 도출하였다.

In order to perform estimations with high reliability, it is necessary to deal with the tail part of the cumulative distribution function (CDF) in greater detail compared to an overall CDF. The use of a generalized Pareto distribution (GPD) to model the tail part of a CDF is receiving more research attention with the goal of performing estimations with high reliability. Current studies on GPDs focus on ways to determine the appropriate number of sample points and their parameters. However, even if a proper estimation is made, it can be inaccurate as a result of an incorrect threshold value. Therefore, in this paper, a GPD based on the Akaike information criterion (AIC) is proposed to improve the accuracy of the tail model. The proposed method determines an accurate threshold value using the AIC with the overall samples before estimating the GPD over the threshold. To validate the accuracy of the method, its reliability is compared with that obtained using a general GPD model with an empirical CDF.

키워드

참고문헌

  1. Breitung, K., 1984, "Asymptotic Approximation for Multinormal Integrals," Journal of Engineering Mechanics, Vol. 110, No. 3, pp. 357-366. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:3(357)
  2. Cornell, C. A., 1969, "A Probability-based Structural Code," Journal of the American Concrete Institute, Vol. 66, No. 12, pp. 974-985.
  3. Cho, S, Lee, M., Lim, W., Choi, J. S., Kim, H. W., Hong, S. and Lee, T. H., 2012, "Efficient Robust Design Optimization Using Statistical Moment Based on Multiplicative Decomposition Considering Nonnormal Noise Factors," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 11, pp. 1305-1310. https://doi.org/10.3795/KSME-A.2012.36.11.1305
  4. Jung, J. J., 2007, "Multiplication Decomposition Method for Accurate Moment-Based Reliability Analysis," Ph.D. thesis, Hanyang University.
  5. Lim, W. and Lee, T. H., 2010, "Reliability-based Design Optimization using Akaike Information Criterion for Discrete Information," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 8, pp. 568-573.
  6. Kim, N. H. and Ramu, P., 2006, "Tail Modeling in Reliability-Based Design Optimization for Highly Safe Structural Systems," 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.
  7. De Zea Bermudez, P. and Kotz, S., 2010, "Parameter Estimation of The Generalized Pareto Distribution-Part 1," Journal of Statistical Planning and Inference, Vol. 140, No. 6, pp. 1353-1373. https://doi.org/10.1016/j.jspi.2008.11.019
  8. McNeil, A. J. and Frey, R., 2000, "Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: An Extreme Value Approach," Journal of Empirical finance, Vol. 7, No. 3, pp. 271-300. https://doi.org/10.1016/S0927-5398(00)00012-8
  9. Begueria, S., 2005, "Uncertainties in Partial Duration Series Modeling of Extremes Related to The Choice of The Threshold Value," Journal of Hydrology, Vol. 303, No. 1, pp. 215-230. https://doi.org/10.1016/j.jhydrol.2004.07.015
  10. Boos, D. D., 1984, "Using Extreme Value Theory to Estimate Large Percentiles," Technometrics, Vol.26, No.1, pp. 33-39. https://doi.org/10.1080/00401706.1984.10487919
  11. Hasofer, A. M., 1996, "Non-parametric Estimation of Failure Probabilities," Mathematical Models for Structural Reliability Analysis. Edited by Casicati, F. and Roberts, B., CRC Press.
  12. Pickands, J., 1975, "Statistical Inference using Extreme Order Statistics," The Annals of Statistics, Vol. 3, No. 1, pp. 119-131. https://doi.org/10.1214/aos/1176343003