• Title/Summary/Keyword: Culture optimization

Search Result 592, Processing Time 0.029 seconds

Optimization of submerged culture conditions for roridin E production from the poisonous mushroom Podostroma cornu-damae

  • Lee, Dong Hwan;Ha, Si Young;Jung, Ji Young;Yang, Jae-Kyung
    • Journal of Mushroom
    • /
    • v.19 no.2
    • /
    • pp.81-87
    • /
    • 2021
  • Roridin E, produced by Podostroma cornu-damae, is a mycotoxin with anticancer activity. To increase the content of roridin E, submerged culture conditions were optimized using response surface methodology. Three factors, namely, medium initial pH, incubation time and agitation speed were optimized using a Box-Behnken design. The optimum submerged culture conditions to increase the content of roridin E included a medium with an initial pH of 4.0, an incubation time of 12.90 days, and an agitation speed of 63.03 rpm. The roridin E content in the submerged culture, under the aforementioned conditions, was 40.26 mg/L. The findings of this study can help lower the current price of roridin E and promote its related research.

Optimization of Culture Conditions for Production of Pneumococcal Capsular Polysaccharide Type I

  • Kim, Su-Nam;Min, Kwan-Ki;Kim, Seung-Hwan;Choi, In-Hwa;Lee, Suhk-Hyung;Pyo, Suhk-Noung;Rhee, Dong-Kwon
    • Journal of Microbiology
    • /
    • v.34 no.2
    • /
    • pp.179-183
    • /
    • 1996
  • Streptoccus Pneumoniae (pneumococcus), the most common cause of bacterial pneumonia, has an ample polysaccharide (PS) capsule that is highly antigenic and is the source of PS vaccine. This investigation was undertaken to optimize the culture conditions for the production of capsulard PS by type 1 pneumococcus. Among several culture media, brain heart infusion (BHI) and Casitone based media were found to support luxuriant growth of pneumococcus type 1 at the same level. Because BHI medium is rather expensive and more complex than the Casitone based media, the Casitone based media was uwed to study optimization of the culture condition. The phase of growth which accomodated maximum PS production was logarithmic phase. Concentrations of glucose greater than 0.2% did not ehnahce growth or PS production. Substitution of netrogen sources with other resources or supplementation of various concentrations of metal ion (with the exception of calcium ion) had adverse affects on growth and PS production. On the other hand, low level aeration was beneficial for increased PS production. Addition of 3 mg/1 concentration of methionine, phenylalanine, and threonine were found to enhance growth and PS production. The synerigistic effect of all the favorable conditions observed in pneumococcal growth assays provided a two-fold cummulative increase in capsular PS production.

  • PDF

Optimization of Pigment Production of Monascus Purpureus P-57 in Liquid Culture (액체배양에서 Monascus purpureus P-57 변이주의 색소생성 최적조건)

  • Park Chi Duck;Jung Hyuck Jun;Yu Tae Shick
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.66-70
    • /
    • 2005
  • Optimization of culture conditions for pigment production of Monascus purpureus P-57 mutant was investigated in liquid culture. The optimum composition of medium for the pigment production was $4\%$ rice power, $0.1\%$ beef extract, $0.03\%$ glutamic acid, $0.1\%\;MgSO_4{\cdot}7H_2O,\;0.25\%\;KH_2PO_4$, the optimum initial pH was 5.0. And the optimum culture conditions was at $30^{\circ}C$ for 8 days under 150 rpm with shaking. M. purpureus P-57 mutant produced the highest pigment as 356.04 units at red pigment and as 268.20 units at yellow pigment, and produced high cell mass as 15.00 g/L in liquid culture under the optimum conditions.

An Approach to maximize throughput for Energy Efficient Cognitive Radio Networks

  • Ghosh, Jyotirmoy;Koo, Insoo
    • International Journal of Advanced Culture Technology
    • /
    • v.1 no.2
    • /
    • pp.18-23
    • /
    • 2013
  • In this paper, we consider the problem of designing optimal sensing time and the minimization of energy consumption in the Cognitive radio Network. Trade-off between throughput and the sensing time are observed, and the equations are derived for the optimal choice of design variables. In this paper, we also look at the optimization problem involving all the design parameters together. The advantages of the proposed scheme for the spectrum sensing and access process are shown through simulation.

  • PDF

Current Status of the Research in Fed Batch Culture as an Aspect of General Optimization Problems in Fermentation

  • Choi, Cha-Yong
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.10a
    • /
    • pp.242-242
    • /
    • 1979
  • The general efforts of applied research and development can be divided into product development, process development, process design, process equipment design, and operation The fed batch culture as one effort of theprocess development in fermentation industry has been practiced since the early times of human history. One particular industrial application with long history is in the cultivation of the baker's yeast where the glucose effect at relatively high glucose concentration is the general rule.

  • PDF

MASS PRODUCTION OF ENTOMOPATHOGENIC NEMATODE HETERORHABDITIS BACTERIPHORA IN VIVO AND VITRO CULTURE

  • Yoo, Sun-Kyun;Gaugler, Randy
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.201-207
    • /
    • 2000
  • The strategies of commercial development have been focused on the economy of scale for a process. The design of media has been recognized as a key in assuring mass production of entomopathogenic nematodes. Media optimization was conducted with insect host, proteins, lipids, and symbiotic bacteria mass. G. mellonella (insect host) produced about 290,000 infective juveniles per one. Complex media produced about 250,000 infective juveniles / ml in liquid culture within 8 days (one generation).

  • PDF

A Study on Effect of Code Distribution and Data Replication for Multicore Computing Architectures

  • Cho, Doosan
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.282-287
    • /
    • 2021
  • A multicore system must be able to take full advantage of the program's instruction and data parallelism. This study introduces the data replication technique as a support technique to maximize the program's instruction and data parallelism. Instruction level parallelism can be limited by data dependency. In this case, if data is replicated to each processor core and used, instruction level parallelism can be used to the maximum. The technique proposed in this study can maximize the performance improvement effect when applied to scientific applications such as matrix multiplication operation.

Application of Factorial Experimental Designs for Optimization of Cyclosporin A Production by Tolypocladium inflatum in Submerged Culture

  • Abdel-Fattah, Y.R.;Enshasy, H. El;Anwar, M.;Omar, H.;Abolmagd, E.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1930-1936
    • /
    • 2007
  • A sequential optimization strategy based on statistical experimental designs was employed to enhance the production of cyclosporin A (CyA) by Tolypocladium inflatum DSMZ 915 in a submerged culture. A 2-level Plackett-Burman design was used to screen the bioprocess parameters significantly influencing CyA production. Among the 11 variables tested, sucrose, ammonium sulfate, and soluble starch were selected, owing to their significant positive effect on CyA production. A response surface methodology (RSM) involving a 3-level Box-Behnken design was adopted to acquire the best process conditions. Thus, a polynomial model was created to correlate the relationship between the three variables and the CyA yield, and the optimal combination of the major media constituents for cyclosporin A production, evaluated using the nonlinear optimization algorithm of EXCEL-Solver, was as follows (g/l): sucrose, 20; starch, 20; and ammonium sulfate, 10. The predicted optimum CyA yield was 113 mg/l, which was 2-fold the amount obtained with the basal medium. Experimental verification of the predicted model resulted in a CyA yield of 110 mg/l, representing 97% of the theoretically calculated yield.

Optimization and Elucidation of Interactions between Ammonium, Nitrate and Phosphate in Centella asiatica Cell Culture Using Response Surface Methodology

  • Omar Rozita;Abdullah M. A.;Hasan M. A.;Marziah M.;Mazlina M.K.Siti
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.192-197
    • /
    • 2005
  • The effects of macronutrients $(NO_3^-,\; NH_4^+\;and\;PO_4^{3-})$ on cell growth and triterpenoids production in Centella asiatica cell suspension cultures were analyzed using the Box­Behnken response surface model experimental design. In screening and optimization experiments, $PO_4^{3-}$ as a single factor significantly influenced cell growth where increasing the phosphate level from 0.1 to 2.4 or 2.6 mM, elevated cell growth from 3.9 to $14\~16g/L$. The optimum values predicted from the response surface model are 5.05mM $NH_4^+$, 15.0mM $NO_3^-$ and 2.6mM $PO_4^{3-}$, yielding 16.0g/L cell dry weight with $99\%$ fitness to the experimental data. While the $NH_4^+-NO_3^-$ interaction influenced cell growth positively in the optimization experiment, $NH_4^+$ and $NO_3^-$ as single factors; and interactions of $NO_3^--PO_4^{3-},\;NH_4^+-PO_4^{3-}$ and $NH_4^+-NO_3^-$ were all negative in the screening experiment. Cell growth and the final pH level were positively affected by $PO_4^{3-}$, but negatively affected by $NH_4^+\;and\;NH_4^+-PO_4^{3-}$ interactions. The different effects of factors and their interactions on cell growth and final pH are influenced by a broad or narrow range of macronutrient concentrations. The productions of triterpenoids however were lower than 4mg/g cell dry weight.

Effects of Fermentation Parameters on Cellulolytic Enzyme Production under Solid Substrate Fermentation (농부산물을 이용한 고체발효에서 발효조건이 목질계 분해 효소 생산에 미치는 영향)

  • Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.302-306
    • /
    • 2014
  • The present study was carried out to optimize fermentation parameters for the production of cellulolytic enzymes through solid substrate fermentation of Trichoderma reesei and Aspergillus niger grown on wheat straw. A sequential optimization based on one-factor-at-a-time method was applied to optimize fermentation parameters including temperature, pH, moisture content and particle size. The results of optimization indicated that $40^{\circ}C$, pH 7, moisture content 75% and particle size between 0.25~0.5 mm were found to be the optimum condition at 96 hr fermentation. Under the optimal condition, co-culture of T. reesei and A. niger produced cellulase activities of 10.3 IU, endoglucanase activity of 100.3 IU, ${\beta}$-glucosidase activity of 22.9 IU and xylanase activity of 2261.7 IU/g dry material were obtained. Cellulolytic enzyme production with optimization showed about 72.6, 48.8, 55.2 and 51.9% increase compared to those obtained from control experiment, respectively.