• 제목/요약/키워드: Cultivation System

검색결과 1,364건 처리시간 0.035초

다중 안전센서 특성을 이용한 다중재배 원격제어장치 (Multi Cultivation Remote-Control System(MCRS) for Crops Through Characteristics of Multi-Safe Sensors)

  • 김종만;조자용;서범석
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.619-622
    • /
    • 2009
  • Multi Cultivation Remote-control System(MCRS) for crpos through characteristics of multi-safe sensors was realized. It was carried out to investigate into the effect of LED Control with the physiological activity of crops(for examples, sprouts). We have also composed a Combined Automatic Control System possible for the control of temperature and humidity at the same time. The applied multi-safe sensors for measurement are blue, green, red, white, yellow leds and humidity sensors, web camera sensors under safe conditions for crops cultivation. And we producted the remote control OS using Linux and defined the characteristics of automatic control about sprouts.

갯까치수염(Lysimachia mauritiana Lam.)의 재배 및 UHPLC 패턴 분석, 호흡기염증 억제 효과 (Cultivation, UHPLC Pattern Analysis, and Inhibitory Effect on Respiratory Inflammation of Lysimachia mauritiana Lam.)

  • 김동선;육흥주;김정미;고채석;장윤정;성윤영
    • 대한본초학회지
    • /
    • 제39권3호
    • /
    • pp.77-84
    • /
    • 2024
  • Objectives : Lysimachia mauritiana Lam. is known as a medicinal plant native to Korea that has antioxidant, anticancer, antibacterial, and antiviral activities. However, until now, research on the cultivation technology of L. mauritiana is insufficient, and there are no research data on the systematic cultivation method and mass production of L. mauritiana. Therefore, this study aims to establish a cultivation system of L. mauritiana. Methods : The cultivation environment of open land and facilities according to the growth of L. mauritiana was compared and tested. In addition, the equivalence of the origin collection extract and the cultivation extract was evaluated through Ultra high performance liquid chromatography (UHPLC) patterns analysis according to cultivation and comparison of the effect of inhibiting respiratory inflammation using BEAS-2B human bronchial epithelial cells. Results : The cultivation technology system was established through cultivation research of L. mauritiana raw materials. In addition, as a result of comparing and evaluating the equivalence of cultivated plants and L. mauritiana raw materials for suppressing respiratory inflammation, the same results were confirmed, and the equivalence was confirmed as a result of analyzing the UHPLC pattern with L. mauritiana raw materials. Conclusions : This study suggests that extract from cultivation research of L. mauritiana plants, which are native to Korea, can be used as a health functional food or medicine to improve respiratory health.

시설용수 및 영농편의용수 공급시스템 개발 (II) - FDA 시스템 현장적용성 평가 - (Development of Clean Water Supplying System for Greenhouse Cultivation and Convenience Water (II) - Assessment of the FDA System through a Site Application -)

  • 이광야;최경숙
    • 한국농공학회논문집
    • /
    • 제51권5호
    • /
    • pp.101-106
    • /
    • 2009
  • The previous study developed the Filter-Disinfection-Adsorption (FDA) system to provide clean irrigation water for greenhouse cultivation as well as convenience water to farmers. In this study, the field examination was undertaken to assess performance of the FDA system. The field application was made in the suburb of Daegu, one of the large city in Korea. The study area located near by down-stream of Gum-Ho river is suffering low irrigation water quality problems with no water supply service facilities. Four water quality parameters including Suspended Solid (SS), Biological Oxygen Demand (BOD), coliform, and turbidity were selected to test the purification performance of FDA system. Also in order to improve the system, this study investigated the defects of using the FDA system through field monitoring. As results, it was found that this system can be used to supply good quality of irrigation water for greenhouse cultivation and also provide convenience water to farmers in the field areas of no water supply services.

The Influence of Light Reduction on the Growth of Microcystis aeruginosa and Variation of Environmental and Chemical Parameters in Large-scale Cultivation System

  • Yang, Taehui;Cho, Ja-young;Kang, Ha-jin;Lee, Chang Soo;Kim, Eui-jin
    • 생태와환경
    • /
    • 제53권4호
    • /
    • pp.336-343
    • /
    • 2020
  • Large-scale cultivation of Microcystis aeruginosa in different light conditions was conducted for verifying the cell growth in a greenhouse system. Environmental and chemical parameters of the large-scale culture medium were measured for analyzing the interaction between M. aeruginosa and its symbiotic bacteria. During cultivation, a difference in cell growth pattern was observed between control (natural light) and light-limited groups (reduction of blue, green, and blue/green light, respectively). Comparing the control group, the light reduced groups showed slow and delayed cell growth through the cultivation period. Also, there is differences in the consuming pattern of total nitrogen and total phosphorus which indicated that the possibility of interaction between M. aeruginosa and symbiotic bacteria.

Effect of Winter Crop Cultivation on Soil Organic Carbon and Physico-chemical Properties Under Different Rice-forage Cropping Systems in Paddy Soil

  • Yun, Sun-Gang;Lee, Chang-Hoon;Ko, Byong-Gu;Park, Seong-Jin;Kim, Myung-Sook;Kim, Ki-Yong
    • 한국토양비료학회지
    • /
    • 제49권4호
    • /
    • pp.335-340
    • /
    • 2016
  • Soil organic carbon plays an important role on soil physico-chemical properties and crop yields in paddy soil. However, there is little information on the soil organic carbon under different forage cultivation during winter season in rice paddy. In this study, we investigated the soil organic carbon and physico-chemical properties in 87 fields of paddy soil cultivated with Barley, rye, and Italian ryegrass (IRG) as animal feedstock during winter season. Organic carbon was 12.9, 14.3, and $16.9g\;C\;kg^{-1}$ in soil with barley, rye, and IRG cultivation, respectively. Among rice-forage cultivation systems, the rice+IRG cropping system was 19.5% higher than in the mono-rice cultivation. Bulk density ranged from 1.17 to $1.28g\;cm^{-3}$ irrespective of cropping systems, and had strongly negative correlation with the soil organic carbon in the rice+IRG cropping system. Carbon storage in rice+IRG cropping systems was average $29.6Mg\;ha^{-1}$ at 15 cm of soil depth, which was 20.4 and 10.3% higher than those of barley and rye cultivation. Increasing carbon storage in paddy soil contributed to the fertility for following rice cultivation. This results indicated that IRG cultivation during winter season could be an alternative and promising way to enhance soil organic carbon content and fertility of paddy soil.

Implementation of A Thin Film Hydroponic Cultivation System Using HMI

  • Gyu-Seok Lee;Tae-Sung Kim;Myeong-Chul Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.55-62
    • /
    • 2024
  • 본 논문에서는 HMI 디스플레이를 활용하고 IoT 기술을 이용한 박막식 수경 재배 방식의 식물재배기를 제안한다. 기존의 식물재배기는 토양 기반의 재배로 관리가 어렵고, 개방된 재배 환경으로 인해 환경조건 최적화가 어려웠다. 또한 즉각적인 제어가 어려워 식물재배의 성장이 지연되어 식물재배에 대한 문제점이 있다. 이러한 문제를 해결하기 위해, MCU와 센서를 연결하여 재배 환경을 구축하고, HMI 디스플레이와 연동하여 환경정보를 확인하고 빠르게 제어할 수 있게 구현하였다. 또한, 환경정보의 변화를 최소화하기 위해 케이스를 적용하였다. 박막식 수경 재배시스템 구현으로 토양에 관한 관리를 편하게 하였고 동작과 제어를 통해 기능성을 높였으며, 디스플레이를 통해 환경정보를 쉽게 파악할 수 있다. 기존 재배기와 수경재배기에서의 작물 재배 실험으로 성장이 빠른 효과성을 확인하였다. 향후 연구 방향으로는 재배 환경정보 전송 및 저장, 비전 카메라를 활용한 성장 정보를 연동하고 비교하여 생육 정보를 최적화할 것이다. 이를 통해 효율적이고 안정적인 식물재배할 수 있을 것으로 기대한다.

자연광 다층 작물재배를 위한 광선반 시스템에 관한 연구 (Exploration of a Light Shelf System for Multi-Layered Vegetable Cultivation)

  • 장성택;장성주
    • KIEAE Journal
    • /
    • 제13권2호
    • /
    • pp.61-66
    • /
    • 2013
  • This study is to eliminate the need for conventional high density plant factory's artificial light source such as LED to reduce the initial investment of the light source installation as well as the operation cost. Use of solar light could enhance the quality of the vegetables similar to those grown in the natural environment. Provision of solar light into the multilayer vegetable cultivation facilities and collecting maximum and sustainable sunlight without too much loss by tracing solar path and properly distributing it through careful control during daytime are crucial for realizing the investigated rooftop light shelf system for multi-layered vegetable cultivation. In this study, we developed an innovative way of effectively allocating sunlight inside even to otherwise shaded zone of a multi-layer vegetable cultivation facility. To prove the effectiveness of the system's sunlight collection and distribution capability, both simulation and experiment in Daejeon are performed and the outcome is analyzed.