• 제목/요약/키워드: Cubic bismuth oxide

검색결과 3건 처리시간 0.02초

Terbium and Tungsten Co-doped Bismuth Oxide Electrolytes for Low Temperature Solid Oxide Fuel Cells

  • Jung, Doh Won;Lee, Kang Taek;Wachsman, Eric D.
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.260-264
    • /
    • 2014
  • We developed a novel double dopant bismuth oxide system with Tb and W. When Tb was doped as a single dopant, a Tb dopant concentration more than 20 mol% was required to stabilize bismuth oxides with a high conductivity cubic structure. High temperature XRD analysis of 25 mol% Tb-doped bismuth oxide (25TSB) confirmed that the cubic structure of 25TSB was retained from room temperature to $700^{\circ}C$ with increase in the lattice parameter. On the other hand, we achieved the stabilization of high temperature cubic phase with a total dopant concentration as low as ~12 mol% with 8 mol% Tb and 4 mol% W double dopants (8T4WSB). Moreover, the measured ionic conductivity of 10T5WSB was much higher than 25TSB, thus demonstrating the feasibility of the double dopant strategy to develop stabilized bismuth oxide systems with higher oxygen ion conductivity for the application of SOFC electrolytes at reduced temperature. In addition, we investigated the long-term stability of TSB and TWSB electrolytes.

Absence of Distinctively High Grain-Boundary Impedance in Polycrystalline Cubic Bismuth Oxide

  • Jung, Hyun Joon;Chung, Sung-Yoon
    • 한국세라믹학회지
    • /
    • 제54권5호
    • /
    • pp.413-421
    • /
    • 2017
  • In this work, we studied a fluorite structure oxides: Yttria stabilized zirconia, (YSZ); Gd doped $CeO_2$ (GDC); erbia stabilized $Bi_2O_3$ (ESB); Zr doped erbia stabilized $Bi_2O_3$ (ZESB); Ca doped erbia stabilized $Bi_2O_3$ (CESB) in the temperature range of 250 to $600^{\circ}C$ using electrochemical impedance spectroscopy (EIS). As is well known, grain boundary blocking effect was observed in YSZ and GDC. However, there is no grain boundary effect on ESB, ZESB, and CESB. The Nyquist plots of these materials exhibit a single arc at low temperature. This means that there is no space charge effect on ${\delta}-Bi_2O_3$. In addition, impedance data were analyzed by using the brick layer model. We indirectly demonstrate that grain boundary ionic conductivity is similar to or even higher than bulk ionic conductivity on cubic bismuth oxide.

Si 및 SrTiO3 기판 위에 증착된 Bi4Ti3O12 박막의 결정구조 및 배향에 따른 강유전 특성 (Ferroelectric Properties of Bi4Ti3O12 Thin Films Deposited on Si and SrTiO3 Substrates According to Crystal Structure and Orientation)

  • 이명복
    • 전기학회논문지
    • /
    • 제67권4호
    • /
    • pp.543-548
    • /
    • 2018
  • Ferroelectric $Bi_4Ti_3O_{12}$ films were deposited on $SrTiO_3(100)$ and Si(100) substrate by using conductive $SrRuO_3$ films as underlayer, and their ferroelectric and electrical properties were investigated depending on crystal structure and orientation. C-axis oriented $Bi_4Ti_3O_{12}$ films were grown on well lattice-matched pseudo-cubic $SrRuO_3$ films deposited on $SrTiO_3(100)$ substrate, while random-oriented polycrystalline $Bi_4Ti_3O_{12}$ films were grown on $SrRuO_3$ films deposited on Si(100) substrate. The random-oriented polycrystalline film showed a good ferroelectric hysteresis property with remanent polarization ($P_r$) of $9.4{\mu}C/cm^2$ and coercive field ($E_c$) of 84.9 kV/cm, while the c-axis oriented film showed $P_r=0.64{\mu}C/cm^2$ and $E_c=47kV/cm$ in polarizaion vs electric field curve. The c-axis oriented $Bi_4Ti_3O_{12}$ film showed a dielectric constant of about 150 and lower thickness dependence in dielectric constant compared to the random-oriented film. Furthermore, the c-axis oriented $Bi_4Ti_3O_{12}$ film showed leakage current lower than that of the polycrystalline film. The difference of ferroelectric properties in two films was explained from the viewpoint of depolarization effect due to orientation of spontaneous polarization and layered crystal structure of bismuth-base ferroelectric oxide.