• Title/Summary/Keyword: Cubic Modeling

Search Result 76, Processing Time 0.027 seconds

A Novel 3D Modeling Technique by Spatial Tiling of the Pre-defined Cubical Grids (정의된 육면 격자의 공간 타일링에 의한 3차원 모델링)

  • Nam, Sang-Hun;Chai, Young-Ho
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.103-108
    • /
    • 2008
  • In case of the 3D Sketch System for spatial modeling, The use of 3D input devices in 3D environment is the best method to express designer's intention. However, the designer's 3D drawing skill is not accurate. 80, we use the multiple strokes used generally by 2D sketch. Multiple strokes make the designer recognize model's current drawing features and what he change We use the cubic-based drawing method to calculate many surfaces in real time. We arrange the relations of cubes for composing surfaces and multi strokes. We implement the sketch system taking cubic modeling and multiple strokes technique.

  • PDF

PVT Relations of Associating Fluids using the Cubic-Plus-Association EoS (CPA 상태방정식에 의한 회합성 유체의 PVT 관계)

  • Kim, Mi-Kyoung;Shim, Min-Young;Kim, Ki-Chang
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.195-202
    • /
    • 2000
  • For modeling an equation of state suitable for describing associating fluids, we combined the cubic equation of state (Peng-Robinson) and an association term of SAFT. The resulting EoS (Cubic-Plus-Association) is not cubic with respect to volume and contains five pure compound parameters. Excellent correlations of both vapour pressures and saturated liquid volumes were obtained for n-alcohols and secondary alcohols. We considered a method for reducing the number of adjustable pure compound parameters from five to three, and the resulting 3-parameters EoS relation maintained the good correlation of vapour pressures and saturated liquid volumes.

  • PDF

Single Crystals Growth of Cubic Zirconia by Skull Method (Skull법에 의한 Cubic Zirconia 단결정 성장)

  • 김석호;최종건;오근호;조영환;김영준;오봉인;강원호
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.161-167
    • /
    • 1988
  • Yttria-Stabilized Cubic Zirconia Crystals with Various Y2O3 amounts (6-15mol%) were grown by the Skull melting technique. The modeling of the nucleation at the Skull bottom and the best growth condition were studied. The abrupt changes in generator heating Power and lowering rate of crucible caused the dendritic growth in the grown crystal. The optimum condition of cubic Zirconia single crystals was obtained when the lowering rate was gradually increased. The effect of Y2O3 amounts on the perfection adn the color of the grown crystal were determined. The darkish color generated in the crystals added Y2O3 amounts over 12mol% was eliminated by the annealing in air at 1200$^{\circ}C$ for 24hrs.

  • PDF

THE CAUCHY PROBLEM FOR AN INTEGRABLE GENERALIZED CAMASSA-HOLM EQUATION WITH CUBIC NONLINEARITY

  • Liu, Bin;Zhang, Lei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.267-296
    • /
    • 2018
  • This paper studies the Cauchy problem and blow-up phenomena for a new generalized Camassa-Holm equation with cubic nonlinearity in the nonhomogeneous Besov spaces. First, by means of the Littlewood-Paley decomposition theory, we investigate the local well-posedness of the equation in $B^s_{p,r}$ with s > $max\{{\frac{1}{p}},\;{\frac{1}{2}},\;1-{\frac{1}{p}}\},\;p,\;r{\in}[0,{\infty}]$. Second, we prove that the equation is locally well-posed in $B^s_{2,r}$ with the critical index $s={\frac{1}{2}}$ by virtue of the logarithmic interpolation inequality and the Osgood's Lemma, and it is shown that the data-to-solution mapping is $H{\ddot{o}}lder$ continuous. Finally, we derive two kinds of blow-up criteria for the strong solution by using induction and the conservative property of m along the characteristics.

Compressive Properties of 3D Printed TPU Samples with Various Infill Conditions (채우기 조건에 따른 3D 프린팅 TPU 샘플의 압축 특성)

  • Jung, Imjoo;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.3
    • /
    • pp.481-493
    • /
    • 2022
  • This study investigated process conditions for 3D printing through manufacturing thermoplastic polyurethane (TPU) samples under different infill conditions. Samples were prepared using a fused deposition modeling 3D printer and TPU filament. 12 infill patterns were set (2D: grid, lines, zigzag; 3D: triangles, cubic, cubic subdivision, octet, quarter cubic; 3DF: concentric, cross 3D, cross, honeycomb), with 3 infill densities (20%, 50%, 80%). Morphology, actual time/weight and compressive properties were analyzed. In morphology: it was found that, as infill density increased, the increase rate of the number of units rose for 2D and fell for 3DF. Printing time varied with the number of nozzle movements. In the 3DF case, the number of nozzle movements increased rapidly with infill density. Sample weight increased similarly. However, where the increase rate of the number of units was low, sample weight was also low. In compressive properties: compressive stress increased with infill density and stress was high for the patterns with layers of the same shape.

Modeling Implied Volatility Surfaces Using Two-dimensional Cubic Spline with Estimated Grid Points

  • Yang, Seung-Ho;Lee, Jae-wook;Han, Gyu-Sik
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.4
    • /
    • pp.323-338
    • /
    • 2010
  • In this paper, we introduce the implied volatility from Black-Scholes model and suggest a model for constructing implied volatility surfaces by using the two-dimensional cubic (bi-cubic) spline. In order to utilize a spline method, we acquire grid (knot) points. To this end, we first extract implied volatility curves weighted by trading contracts from market option data and calculate grid points from the extracted curves. At this time, we consider several conditions to avoid arbitrage opportunity. Then, we establish an implied volatility surface, making use of the two-dimensional cubic spline method with previously estimated grid points. The method is shown to satisfy several properties of the implied volatility surface (smile, skew, and flattening) as well as avoid the arbitrage opportunity caused by simple match with market data. To show the merits of our proposed method, we conduct simulations on market data of S&P500 index European options with reasonable and acceptable results.

Inlet Surface Blending using NURBS Skinning (NURBS Skinning을 이용한 Inlet Surface 합성)

  • Choi, Gun-Il
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.181-185
    • /
    • 2002
  • The modeling of realistic water-jet geometry is needed in order to facilitate the design modifications. The present paper proposes a method of generating inlet geometry. Inlet duct was represented by NURBS method which utilized the skinning and local cubic interpolation scheme. Three test examples are presented demonstrating the effectiveness of the methods of skinning and local cubic interpolation. Computational examples associated with practical configurations have shown the usefulness of the present method.

  • PDF

Fused Deposition Modeling of Iron-alloy using Carrier Composition

  • Harshada R. Chothe;Jin Hwan Lim;Jung Gi Kim;Taekyung Lee;Taehyun Nam;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.44-56
    • /
    • 2023
  • Additive manufacturing (AM) or three-dimensional (3D) printing of metals has been drawing significant attention due to its reliability, usefulness, and low cost with rapid prototyping. Among the various AM technologies, fused deposition modeling (FDM) or fused filament fabrication is receiving much interest because of its simple manufacturing processing, low material waste, and cost-effective equipment. FDM technology uses metal-filled polymer filaments for 3D printing, followed by debinding and sintering to fabricate complex metal parts. An efficient binder is essential for producing polymer filaments and the thermal post-processing of printed objects. This study involved an in-depth investigation of and a fabrication route for a novel multi-component binder system with steel alloy powder (45 vol.%) ranging from filament fabrication and 3D printing to debinding and sintering. The binder system consisted of polyvinyl pyrrolidone (PVP) as a binder and thermoplastic polyurethane (TPU) and polylactic acid (PLA) as a carrier. The PVP binder held the metal components tightly by maintaining their stoichiometry, and the TPU and PLA in the ratio of 9:1 provided flexibility, stiffness, and strength to the filament for 3D printing. The efficacy of the binder system was examined by fabricating 3D-printed cubic structures. The results revealed that the thermal debinding and sintering processes effectively removed the binder/carrier from the cubic structures, resulting in isotropic shrinkage of approximately 15.8% in all directions. The scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) patterns displayed the microstructure behavior, phase transition, and elemental composition of the 3D cubic structure.

A Study on the Pit Excavation Volume Using Cubic B-Spline

  • Mun, Du-Yeoul
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.5 no.1
    • /
    • pp.40-45
    • /
    • 2002
  • The calculation of earthwork plays a major role in the planning and design phases of many civil engineering projects, such as seashore reclamation; thus, improving the accuracy of earthwork calculation has become very important. In this paper, we propose an algorithm for finding a cubic spline surface with the free boundary conditions, which interpolates the given three-dimensional data, by using B-spline and an accurate method to estimate pit-excavation volume. The proposed method should be of interest to surveyors, especially those concerned with accuracy of volume computations. The mathematical models of the conventional methods have a common drawback: the modeling curves form peak points at the joints. To avoid this drawback, the cubic spline polynomial is chosen as the mathematical model of the new method. In this paper, we propose an algorithm of finding a spline surface, which interpolates the given data, and an appropriate method to calculate the earthwork. We present some computational results that show the proposed method, of the Maple program, provides better accuracy than the method presented by Chen and Lin.

  • PDF

Characterization of Fracture Transmissivity for Groundwater Flow Assessment using DFN Modeling (분리단열망개념의 지하수유동해석을 위한 단열투수량계수의 정량화 연구)

  • 배대석;송무영;김천수;김경수;김증렬
    • The Journal of Engineering Geology
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 1996
  • The fracture transmissivity($T_f$) is the most important parameter of fracture in assessing groundwater flow in fractured rock masses by using the DFN(Discrete Fracture Network) modeling. $T_f$, the most sensitive parameter m DFN modeling, is dependent upon aperture, size and filling characteristics of each fracture set. In the field test, the accuracy of $T_f$ can be increased with Borehole Acoustic Scanning (Televiewer) and Fixed Interval Length(FIL) test in constant head. $T_f$ values measured from FIL test was modified and estimated by each fracture set on the basis of the Cubic Law and the information of aperture and filling characteristics obtained from Televiewer. The modified $T_f$ results in the increase of confidence and reliability of modeling results including the amount of tunnel inflow.And, this approach would reduce the uncertaintity of the assessment for groundwater flow in fractured rock masses using the DFN modeling.

  • PDF