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ABSTRACT: The calculation of earthwork plays a major role in the planning and design phases of wmany civil engineering projects,
such as seashore reclamation; thus, improving the accuracy of earthwork calculation has become very bmportant. In this paper, we
propose an algorithm for finding a cubic spline surface with the free boundary conditions, which interpolates the given three-dimensional
data, by using B-spline and an accurate method to estimate pit-excavation volume. The proposed method should be of interest to
surveyors, especially those concerned with accuracy of volume computations. The mathematical models of the conventional metlods have
a common drawback: the modeling curves form peak points at the joints. To avoid this drawback, the cubic spline polynomial is chosen
as the mathematical miodel of the new method. In this paper, we propose an algorithm of finding a spline surface, which interpolates the
given data, and an appropriate method to calculate the earthwork. We present some computational results that show the proposed
method, of the Maple program, provides better accuracy than the method presented by Chen and Lin.
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1. Introduction

Surveyors are often called upon to measure volumes of
earthwork that needs to be moved for construction of
seashore reclamation, highways, railroads, canals, earth
dams, pipelines, and similar projects. Earthwork quantities,
in the types of construction projects described herein, are
frequently of such magnitude as to make up appreciable
percentages of the total project cost. Several methods have
been developed for estimating the pit excavation volume,
ranging from a to more complicated
formulas and numerical methods. The standard methods can
be characterized with three basic ideas: the trapezoidal rule,
the Simpson rule, and the cubic spline function. The
which the method,

approximates the ground profile of each grid cell using a

simple formula

trapezoidal method, is simplest
plane, and estimates the pit excavation volume as the
product of the area of the grid cell and the average
excavation heights of the grid cell comers (Anderson et al,
1985; Schmidt and Wong, 1985, Wolf and Brinker, 1989;
Moffit and Bossler, 1998). This method is the most
commonly wused, but the interfaces between the
approximating planes are sharp, and it may not properly
describe the ground surface. The Simpson-based methods
improve the accuracy of the volume estimation for the
approximation of the ground surface by considering a
second-degree polynomial or a third-degree polynomial in
each direction of the grid (Easa, 1988; Chambers, 1989).
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In Easa (1983), it was assumed that the rectangles formed by
the grid were of equal size; that is, the grid was formed by
taking equal size intervals along each axis. Chambers (1989)
generalized Fasa's result by allowing grids in which the
rectangles were of unequal sizes; that is, the grids were
formed by partitioning the axis into intervals of unequal sizes.
both methods have a common drawback: the
interfaces of the approximating surfaces are too sharp. To
eliminate this drawback, Chen and Lin (1991) proposed the

cubic spline method, which provides smooth connections

However,

between the approximating cubic spline polynomials with the
natural boundary conditions. Also, Fasa (1998) developed the
cubic Hermite polynomial method, which guarantees smooth
the
polynomials. In this paper, we propose a method of finding a

connections  between approximating cubic Hermite

cubic spline surface, which interpolatcs the given three
dimensional data, by using cubic B-splines. Note that our
developed method is different from Chen and Lin's result.
Chen and Lin (1991) approximate the ground surface with the
cubic spline along one direction, and with the linear function
along the But

approximates the ground surface with the cubic spline

other direction. our proposed method
polynomial along both x and y directions. The method is
based on the cubic B-spline, and the interpolating cubic spline
surface can be obtained by those B-splines. Computational
results of the proposed method and some comments are
presented in section 4. I have also compared the proposed
method with the spot height method, line of best fit method,

and the Chen and Lin method to earthwork volume.
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2. Methods of Pit Excavation Volume

2 1 Spot height method

“onsider the rectangular grid of whose sides into m and
n mtervals. The excavation depths f(xi ,yi) at the intersection
points f(xi ,yi), withi =0, 1, -, mandj =0, 1, ---, n are
ki own. Then, the composite formular for calculating the
vt lume of total grid, V, is given by

Ve hf b Sa M

ir which aij = the corresponding elements of the following

1Y atrix
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2 2 Line of best fit method

In this method, a simplified cross secton is formed !

;jv
fi ting a straight line to prodetemined cross section points
u-ing the theory of least squares(see equa. 3).
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Value of parameters a and b in Egs.(3), (4) and vary from

©)

a=

)

¢e cross section to another due to the wvariation in
¢ evations.

¢ .3 Chen and Lin method

Considering the area between the x-axis and curve ab, the
¢ .abic spline polynomial Sj(x) in the interval(xj, xj+1) may be
' mitten in the form

S;(x=a,+b(x— x)—c; (x~ 2%+ d; (x— x)*

©)
«nd the area Aj can be computed with the integral

Aj=Ca;— bjcit cixi— dix Nz~ x)*
+(-§*’4 c,-xj—i(iéx—j)(x?ﬂ—xf)

d; 4
L (xja—x ) ©

+(A§_J_ dj' X/)( d,-+13—x‘})+

sing Eq. 6, we can compute the area between the curve ab
md the x-axis in the interval (xj, xj+1), i.e,, the area Aj. In

similar manner we can compute the area between the curve
ab and the x-axis in the interval (xo, xn) using the
following equation:

A= [ Stids= :2;A]- 7)

Eq. 7 is defined as the cubic spline area frmular. we can
derive n cubic spline polynomias, 5,0, Sil,.., Sin-1 in the
x =xi direction.
(S Dfd=aiy+ biyly=y)+ ey (v=v)°

+di; (v=y)° )
Using Eq. 6, the formular for calculating the area between
the curve that passes through the points fOk, flXk..., fmk
and the baseline y = yk(z=0) in the interval [(x0, yk), (xm,
yk)], denoted as Ayk, is given by

A e .{X : Su}?(x)dx+ fﬂ\:] Sl,k(x)dx+ ......

+f«:.”| Sm'],k(x)dx (9)

the points {0k, flk.., fmk+l and the baseline y =
yk+1(z=0) in the interval [(x0, yk+1), (xm, yk+1)], denoted
as Ayk, is given by

Aykq: fx‘ S(L/“](X)d)("‘ fx ) S]‘;ﬁl(x)dx{‘ """

+ fx S 1 ket (X)dx (10)

It is reasonable to use the "end area" method to calculate
the excavation volume between Ayk and Ayk+1 as follows:

_CAut Ap)dy

4 2

1n

2.4 Proposed method(spline surface interpolation
and its induced linear systems)

Let two points Co= (x5, ¥5) be

cy=(x;,y;) and
given. Then the line segment joining above two points can
be expressed as

t3—1 I— 1

p(t’cl,CZ;fz,f3): tg‘_llz C1+ tg_tz

co, t=[ 1y, t3] (12)

The two parameters f and [y are arbitrary real numbers
with £,< £5.

If we introduce the piecewise constant functions

1, t=<Kt;41,
Bi)= (13)
0, otherwise

and set p, ()= p(tlc;—y, ¢i5 b, ti41), We can write
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A= 35 5:1(0 Biold) (14)

For the quadratic spline curve, let three control points
C1, C2,C3 be given and set the knots with fo<#3{#4<t;.
Then we can obtain the quadratic spline curve by using two
straight lines passing through ¢; and ¢y, ¢y and c¢3 in

the following way.

ti— 1t
Mtley, ez, ¢35 b, b, by, 15) = t44— 7 o(tley, ez by, ty)
t— 1
+ _3 p(tlcy, ¢35 ts, t5). (15)
ti—ts

Here ¢ is the parameter which is in [#3, #;4]. For any #
control points (¢;)’i~;, we can define the piecewise
quadratic spline curve by using the formula (15) and the
knot vector (#;) 772 with <3<+ b1 <E peo

Set pio()=p(tlcica, Cimts Cistict, ti tiv1, Eive). Then

we can write the formula more precisely as

A= 25 pia Big(D) (t6)
Similarly, we can define the piecewise cubic spline curve.
D=3 bis(DB (D), 17)

The formulas (14), (16), and (17) can also be written in
the form of

A= 2, € Bidd (18

where B; (1) is given by the recurrence relation

I—t tivita— ¢
. - . +___—
Bid tiva™ tiBl'd 14 tivrra™tit1 {19
XB,‘+1_d_1(t), d:1,2,3.

Here the function B ;; is called a B-spline of degree
d(d=1,2,3) with knots ¢, The B-spline B, depends

only on the knots (¢#;) 5:(1”1

B-splines, B; [ = B(tl¢;, -
a=2
(i, tivatjrar) =C(a, b, c,d), then (19 can be

. To understand the nature of
s Fiva+1) is sometimes useful.

For  example, if and if  we  set

written B(f|a,b,-~~,c,d)(t)z—gz%B(tIa,b,---,c)(t)
+-2=L B(116, -, c.a)(1). (20)

We consider an interpolation problem at a set of gridded
data (x,,y;, f;) 721 j-1, where

a=x{x3{Kx,,=b and c=y,;{y{{y,,,=d. For

each 7,7, we can think of f; as the value of an unknown

function f= Ax,y) at the point (x,y). We think of S,

and S, as two univariate piecewise cubic spline spaces
S1= span{¢y, -, ¢ ,,} and
Sy = span{@,,+, ® ,,}, where the ¢'s and ¢'s are
bases of cubic B-splines for the two spaces. With g in the
I3 132;
form  g(x,y)= lgl qz:.l CpaPdMPy(x), the above

interpolation conditions lead to a set of equations
2 20000 Blx) = £ @)

for all 7=1,:-,m; and j=1,---, my. This double sum

can be split into two sets of simple sums
2 = £ @)
qz::lcp.qwa(yj) = dP./'- (23)

We can interpret (22) and (23) as follows:

&1 (xy)  dalxp) ¢m,(x]) d,; f(xl,yj')
$1(x2)  @aliy) S mlx9) || da Koxz,v))
= (24)
¢1(xml) ¢2(xm,) ¢m1(xm,> dm‘,/ f(xm,,yj)
After solving the linear systems (23) and (24), we

can determine the control points

ci; (1=1,2,+,m,j=1,2,-,my). Substituting the

control points into g{x, ¥) = pZ:'l qZ;.l Cp o3 Pp(x),

we find a piecewise cubic spline surface g{x,y) such that

g(xi, yj) :fij for

1(y1)  ea(3) 2wy Cit diy

¢1(J’2) (02(3’2) ¢m3(y2) Ciz2 diy
- 25)

o1 (V) 2oV ) 0 @Y Cim i m,
i=1,2,,my and 7=1,2,, my. With this
interpolating cubic spline surface g(x,v), we can

determine the approximate volume in the following way.

b ~d M .
Volume ~ [ [* 3} 3% ¢,, 0,») #y(0) dy dx (26)

Note that there are many ways to determine an appropriate

knot vector satisfying the Shoenberg-Whitney nesting
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cowditions for a piecewise cubic spline surface interpolating
th. given data. In this paper, we only concentrate on the
pi-cewise cubic spline without boundary conditions and
st gest method for the choice of an appropriate knot vector
wich makes cubic B-splines. We consider nonuniform knot
ve :tor, and present some computational results of these two
ce ses in the following section.

3. Some Computational Results

We use Maple software to implement our proposed
al jorithm. We test two examples with several cases given
b Chen and Lin (1991), spot height method, line of best fit
r 2thod(1987). The first example is f(x, y) = vV 400+ y2/y
for 1<x<12] and 1<y<9]. There are three cases for the
fi:st example:

150 *

£ 100 -

Height

T a0

120 ¥-Direction (m)
X-Direction (m)

Fg 1 An example terrain of v 400+ y?/y

Table 1 The height data to casel of V 400+ y?%/y

[ v *| 1m | 16m | 41m | 51lm | 91m | 121m
| im 2002 | 2002 | 2002 | 2002 | 2002 | 20.02
16m 160 | 160 | 160 | 160 | 160 | 160
31m 119 | 119 | 119 | 119 [ 119 [ 119
46m 109 | 109 [ 109 | 109 | 109 [ 1.09
6lm 105 [ 105 | 105 | 1.05 | 1.05 | 1.05
76m 103 | 103 | 103 | 1.03 | 103 | 103
91m 102 | 102 [ 102 | 1.02 | 102 | 102

Case 1; a 5 X 6 grid, with unequal intervals [1 16 41 51 91
22} in the x- direction, but with equal intervals [1 16 31 46
¢l 76 91] in the y- direction, Case 2; a 5 X 6 grid, with
cqual intervals [1 25 49 73 97 121} in the x-direction, but
vith unequal intervals [1 11 31 41 71 81 91] in the
* -direction,

tase 3; a 5 X 6 grid, with both unequal intervals {1 16 41
11 91 121} in the x-direction and [1 11 31 41 71 81 91] in
he y-direction. The second example is f(x, y) = (20 +y)/ V x
or 1<x<12]1 and 1<y<9]. There are three cases for the
rst example:Case 1; a 6 X 5 grid, with equal intervals [1
-1 41 61 81 101 121] in the x-direction, but with unequal
itervals {1 26 36 66 81 91] in the y-direction,

Table 2 The height data to case2 of vV 400+ y%/y

v 1 Im | %5m | 49m | 73m | 97m | 12lm
Im 20.02 | 20.02 | 20.02 | 20.02 | 20.02 | 20.02
1im 208 | 208 | 208 | 208 | 208| 208
31m 119 0 119 | 119 119 119 119
41m 131 ] 111 | tin | o | | o Lu
7lm 104 | 104 | 104 | 104 | 104 | 1.04
81m 103 | 103 | 103 | 1.03 | 1.03 | 1.03
91m 102 | 102 | 102 | 102 | 102 | 1.02

Table 3 The height data to case3 of v 400+ y*/ y

y X1 1m | 16m | 41m | 5Im | 91m | 121m
1m 2002 | 2002 | 2002 | 20.02 | 2002 | 20.02
11m 2081 208 | 208 | 208 208] 208
31m 119 | 119 | 119 | 119 | 119 1.1ﬂ
41m 111 111 | 11t | 111 ] 111 111
71m 104 | 104 | 104 | 1.04 | 104 | 1.04
81m 103 103 | 1.03 | 1.03 | 1.03 | 1.03
91m 102 102 | 102 | 102 | 102 | 1.02

Height (m)

Y-Direction (m)
X-Direction (m)

Fig. 2 An example terrain of (20 +y)/ Vx

Case 2; a 6 X 5 grid, with unequal intervals [1 16 46 56 91
101 121} in the x-direction, but with equal intervals [1 19 37
55 73 91] in the y-direction, Case 3; a 5 X 6 grid, with both
unequal intervals {1 16 46 56 91 101 121] in the x-direction
and [1 26 36 66 81 91] in the y-direction. For the choice of
a knot satisfying the Schoenberg-Whitney nest
conditions, the uniform knot vector is the simplest method.

vector

Table 4 The height data to casel of (20 +y)/ V x

y * | 1m 21ﬂ 41m | 61m | 81m | 101lm |121m
Im 21.00 | 458 | 328 | 269 | 233 | 209 | 191
26m 46.00 | 208 | 2.08] 2.08] 2.08| 208 | 2.08
36m 56.00 |12.22| 875| 717| 622| 557 | 5.09
66m 86.00 |18.77|1343 [11.01| 956 | 856 | 7.82
81m 101.00 | 22.04 {15.77 | 12.93 (11.22| 10.05{ 9.18
91m 111.00 | 24.22117.34 | 14.21 | 12.33 | 11.05 |10.09
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Table 5 The height data to case2 of (20 +y)/ Vx

Table 7 Application results for example terrain of vV 400+ y*/y

Therefore, we test the case of uniform knot vector. We take
the uniform knot vector [0, 0, 0, O, 122 2‘%, 122, 122, 122,
122,] in the x-direction and [0, 0, 0, 0, 23, 46, 69, 92, 92, 92,
92] in the y-direction for the first ex-ample. Also, for the
second example, we have the uniform knot vector [0, 0, O,

0, 14& % 3%6 122, 122, 122, 122] in the x-direction and

[0, 0 0 0 93—2 %, 9%, 92, %2, 92] in they-direction. For
the nonuniform knot vector, we test the first example with
1,1, 1, 1, 31, 61, 122, 122, 122, 122] in the x-direction and
[1,1, 1,1, 7 46, 69, 92, 92, 92, 92] in the y-direction. Also,

121 363
27 47

122, 122, 122, 122] in the x-direction and [1, 1, 1, 1, %L

we test the second example with [1, 1, 1, 1, 10,

1?)—2, 92, 92, 92, 92] in the y-direction. Here we can

Surveying data input{(coordinate and height)
f(xi,v)) for i=1,2---,my, i=1,2---,m»

Formation of the knot vector for x,y axis direction
that satisfies the schoenberg-Whitney nesting
condition
An example of no boundary condition
case, {x1,x;x;X1.ko kg, K m_»Xm»Xm,» Xmys X, )

and (v, viy1vn ke ks Ky Yy Yins Vi Vin,)

\

Formation of B-spline using the knot vector ]

Calculate the
Gij(xi,y;) (i=1,2:+-my, j=1,2:--,my)
and solve the linear system

L Formation of cubic spline surface j

L Calculate the volume T
Fig. 3 Flow chart of a proposed method.

v ! 1m |16m| 46m | 56m | 9Im |101m  121m Casel Case2 Case3
Method | Volume | Error | Volume | Error | Volume | Error
1m 21.00 {525 310 | 281 | 220 | 209 | 1.91 (m) (%) () (%) . (m) (%)
19m 39.00 | 9.75| 575 | 5.21 4.09 | 3.88( 3.55 Ei(ad 1710913 ) 1710913 ) 117,109.13 )
37m 57.00 (14.25| 840 | 7.62| 598 | 567 5.18 volume
55m 75.00 118.75] 11.05 [10.02| 786 | 746 682 Spot  129,664.00| 73.381 | 24,906.00 | 45.571 24,018.00 140.381
73m 93.00 |23.25| 13.71 {1243| 975 | 9.25| 845 Line |29817.00 | 74.280 | 24519.00 { 43.310 - 24519.00 |43.310
91m J 111.00 [27.75| 16.37 | 14.83 | 11.64 | 11.05|10.09 Chen |26,178.8553.011 |18,076.02| 5.651 ‘18,076.02 5.651
1
Table 6 The height data to case3 of (20 +y)/ \/} Proposed 16,945.15| 0.960 (17,488.18| 2.220 1’17,488.18; 2220J
X 1m | 16m | 46m | 56m | 91m | 101m |121m| Swnmarize some computational results. example with [1, 1,
N4
121 363 ; : :
1m 2100 | 525 | 310 | 281 | 220 | 209 [ 191 | L 1 10, -5, <5, 122, 122, 122, 122 in the x-direction
26m 6.00 | 11.50] 6.78 | 6.15 482 | 458 | 4.18 and [1, 1, 1, 1, 91 m/ 92, 92, %2, 92| in the y—dlrectlorl.
36m 56.00 | 14.00 | 826 | 748 | 587 | 557 | 5.09 3 3
66m 86.00 | 21.50 [12.68 |11.49| 9.02 856 | 7.82 Here we can summarize some computaﬁonal results.
81m 101.00| 25.25 | 14.89 1 13.50 | 10.59| 10.05| 9.18
91lm 111001 27.75 {1637 {1483 | 1164 | 11.05 | 10.09

Table 8 Application results for ex.mple terrain of (20 +y)/ Vi
T e ‘

Casel Case2 | Case3

Method | yolume | Error | Volume | Error | Volume | Error
m’) (%) (m) (%) (m) (%)

oxact 11118,800.00/ - |11880000] - |118,800.00| -
Spot |149,009.30(25.429 141,614.50l19.204 141,613.80(19.204
Line 178,025.7649.850|190,359.50 | 60.2401190,374.40 | 60.250
Chen [139,567.80!17.481(122,008.90| 2.701 |121,859.90| 2.576
Proposed [117,657.45| 0.960/119,116.21| 0.260|119,116.21! 0.260

Since the ground surface is expressed mathematically, the
exact volume can be determined using intergration as
17,109.13m" and 118,800m’. From the results of cases 1, 2, 3
of example 1, as shown in Table 7, the error produced
using a spot heigt method, line best of fit, Chen and Lin
method is 2.5~77 times larger than that using a proposed
method. Similarly, the results of cases 1, 2, 3 of example 2,
as shown in Table 8, the error produced using a spot heigt
method, line best of fit, Chen and Lin method is 9.9~232

100 Ocasel

90 Ocase2

80 Hcase3
E 70

4
r 80
[} 50
‘40
(%)
30
20
10
¢}
Spot Line Chen Proposed

Method

Fig. 4 An earthwork error of the terrain v 400 + y2/ y
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100 /‘ Ocasel

0 [Jcase2

80 Fcased
E 70
r 60
"5

[
r 40
%) g
20
10
Spot Line Chen Proposed
Method

Fig. 5 An earthwork error of the terrain (20 +y)/ Vx

t nes larger than that using a proposed method. Also, from

the results of cases 1, 2, 3 of example 1 and 2 as shown in

Tible 7, 8, the error produced using an improper grid is 2.3
94 times larger than that using a proper grid.

4. Conclusions

In this paper, a new formula has been developed for
¢ timating the volume of a borrow pit excavation, based on
21 extension of the cubic spline polynomial, without
toundary condition. Because the grid of a borrow pit is
¢ mstructed by choosing the variational points of the ground
profile and dividing the area of the pit into rectangles of
unequal interval, the presented formula can be applied to
the case in which the pit is divided into a grid with
t.nequal intervals. From this study, the following comments
riay be made:

{ ) The proposed method is applied to two examples, and
the results show that it is generally better than the spot
height method, line of best fit method, and the Chen and
Lin method.

() We propose an algorithm of finding a spline surface,
which interpolates the given data, and is an appropriate
method to calculate the earthwork. We present some
computational results showing that our proposed method
provides better accuracy than Chen and Lin's method.

(3) For maximum accuracy in estimating the volume of a pit
excavation, it is very important to select the proper points
(the wvariational point of the ground profile) when
constructing the grid.

(#) The mathematical models of the conventional methods
have a common drawback: the modeling curves form peak
points at the joints. To avoid this drawback, the cubic
spline polynomial is chosen as the mathematical model of
the new method. From the characteristics of the cubic
spline polynomial, the modeling curve of the new method
is smooth and matches the ground profile well.
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