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Abstract. In this paper, we introduce the implied volatility from Black-Scholes model and suggest a model for 
constructing implied volatility surfaces by using the two-dimensional cubic (bi-cubic) spline. In order to utilize a 
spline method, we acquire grid (knot) points. To this end, we first extract implied volatility curves weighted by 
trading contracts from market option data and calculate grid points from the extracted curves. At this time, we 
consider several conditions to avoid arbitrage opportunity. Then, we establish an implied volatility surface, 
making use of the two-dimensional cubic spline method with previously estimated grid points. The method is 
shown to satisfy several properties of the implied volatility surface (smile, skew, and flattening) as well as avoid 
the arbitrage opportunity caused by simple match with market data. To show the merits of our proposed method, 
we conduct simulations on market data of S&P500 index European options with reasonable and acceptable 
results. 
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1.  INTRODUCTION 

The option pricing formula of the Black-Scholes 
model is still the most widely used amongst market prac-
titioners (Han and Lee, 2008; Han et al., 2009). The main 
merits of the model include their simplicity, robustness, 
and ease of implementation. The only unknown parame-
ter in the pricing formula is the volatility of the underly-
ing. In order to obtain it, the historical volatility was pro-
posed and several methods to calculate it has been devel-
oped (Parkinson, 1980; Rogers and Satchell, 1991; Ro-
gers et al., 1994). The option prices using the historical 

volatility mismatch with the real market option prices 
since the assumptions of the Black-Scholes model do not 
satisfy the real market properties. Therefore, instead of 
the historical volatility, the implied volatility surface (IVS) 
attained from inverting the Black-Scholes formula is used 
for consistent valuation of the derivatives with the finan-
cial markets (Black and Scholes, 1973). In other words, 
the IVS is used for the absence of arbitrage. We usually 
build the IVS according to the forward-moneyness, which 
is the strike price divided by the forward price of an un-
derlying asset, and time to expiry. In general, IVS has the 
shape of smile with the moneyness and the level of im-

† : Corresponding Author  



324 Seung-Ho Yang·Jaewook Lee·Gyu-Sik Han 

 

plied volatilities increases or decreases according to the 
level of the time to maturity. Since the option prices 
evaluated by Black-Scholes formula are equal to the real 
market option prices with implied volatility, modeling the 
IVS directly becomes a major concern recently. There are 
several methods to formulate the implied volatility sur-
face (Cont and da Fonseca, 2002; Dumas et al., 1998; 
Konstantinidi et al., 2008). Especially, local volatility mo-
dels that were originally studied by Dupire, Derman et al., 
and Rubinstein and inserted into highly efficient pricing 
models by Andersen et al. and Dempster et al. are very 
much dependent on an estimate of the IVS (Andersen and 
Brotherton-Ratcliffe, 1997; Dempster and Richards, 2000; 
Derman and Kani, 1994; Dupire, 1994; Fengler, 2005; 
Kim et al., 2009; Rubinstein, 1994). The estimate should 
be free of arbitrage. Otherwise, negative transition prob-
abilities or negative volatilities might be produced, which 
can make the algorithm solving the generalized Black-
Scholes partial differential equation not to converge.  

In this paper, we propose a method that builds the 
IVS, using two-dimensional cubic spline to satisfy several 
arbitrage-free conditions. The proposed method consists 
of two phases: the first phase for optimizing a constrained 
objective function to look for the implied volatilities to be 
used as the grid points of the two-dimensional cubic 
spline and the second phase for constructing the IVS with 
use of the grid points we find in the first phase. The pro-
posed method will, through simulation results, be shown 
to fit well the real market implied volatility values. The 
paper is structured as follows. In Section 2, we give some 
preliminary notions and terminologies that are needed for 
the subsequent sections. In Section 3, we provide detailed 
explanations to generate an objective function with arbi-
trage-free constraints and to construct an IVS with two-
dimensional cubic spline. Then we show the simulation 
results in Section 4 and conclude this paper in Section 5. 

2.  PRELIMINARY 

2.1 Black-Scholes Option Pricing Formula 

Black-Scholes model is a major breakthrough for 
pricing options in the financial engineering. It is one of 
the most well-known and widely used methods. There are 
several assumptions to derive this formula as follows: 
1. The underlying asset price in the model follows a geo-

metric Brownian motion with constant drift, volatility, 
and interest rate is fixed. 

2. The model assumes no transaction costs and taxes, and 
all securities can be perfectly divisible. 

In the case of paying continuous yield dividends the 
Black-Scholes formula for the European call and put op-
tion prices, denoted by VCall and VPut, are given by 

( ) ( ) ( ){ }0 0 1 2, , , , , r
BSC S K r e F N d KN dττ δ −Σ = −     (1) 

( ) ( ) ( ){ }0 2 0 1, , , , , r
BSP S K r e KN d F N dττ δ −Σ = − − −    (2) 

( ) 2
0
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τ
τ

τ
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where S0 is the present underlying price, K is the strike 
price, τ is the time to expiry date, Σ is the volatility of the 
underlying, N is the cumulative function of a standard 
normal distribution, r is the risk-free interest rate, δ is the 
continuous dividend rate, and F0 is the forward price of 
the underlying. The forward price is calculated as follow: 
 

( )
0 0

rF S e δ τ−=  

2.2 Implied Volatility 

The volatility is used in the Black-Scholes formula, 
but the financial market does not provide it explicitly. 
Though it could be obtained by means of time-series un-
derlying asset prices, the option price generated by the 
realized volatility of past market data would not match 
with the market option prices. That stems from the fact 
that the assumptions of the Black-Scholes formula are too 
simple to apply to the real market. Hence the implied 
volatility, which equated the calculated price to the real 
market price, is one of choices. Implied volatility can be 
represented in terms of the Black-Scholes formula: 

( )( )0 0, , , , , ,BS im marketC S K K F r Cτ τ δΣ =  
( )( )0 0, , , , , ,BS im marketP S K K F r Pτ τ δΣ =  

where Cmarket and Pmarket denote the observed market Euro-
pean call price and put price, respectively, and Σim(K/F0,τ) 
is the implied volatility depending on (K/F0, τ). Here K/F0 
is called forward-moneyness. 

3.  RESEARCH METHODOLOGY 

In this section, we provide a way to construct an IVS, 
using two-dimensional cubic spline based on the implied 
volatilities of the two-dimensional grid points that are 
computed through optimization. Although we can use lo-
cal quadratic polynomial to establish the implied volatil-
ity surface directly, it has some drawbacks. It’s hard to 
choose the optimal bandwidth of the kernel function in 
two-dimensional case and which kernel performs well 
(Kim et al., 2009). The proposed method basically con-
sists of two parts. To begin with, we calculate the implied 
volatilities of grid points through optimization, having no-
arbitrage and calendar-spread-free conditions. Then, we 
construct the IVS with two-dimensional cubic spline us-
ing the implied volatilities of the grid points. 

3.1 Calculating Implied Volatility of Grid Points with 
constraints free of arbitrage 

To compute the implied volatilities of the grid points, 
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we first establish following model to fit the real market 
implied volatilities in each time to maturities. 

( ) ( )22
0 1 2,k a a k aτΣ = + −   (3) 

where 

( )0 1 00, 0, lna a k K F≥ ≥ =  

We usually call k and τ log forward-moneyness and 
time to maturity, respectively. Since the implied volatil-
ity cannot have negative value, we add some constraints 
on a0 and a1. In the case of equity options, the implied 
volatility shows closely linear change as the forward-
money-ness goes higher (i.e. deep-out-of-the-money put 
or deep-in-the-money call) while it increases abruptly as 
the moneyness decreases from one, which means the at-
the-money option (Hull, 2009). Thus, we set the vari-
ance function as the perfect square function. Based on 
this model we can calculate risk-neutral probability den-
sity function. 

 
Proposition: The cumulative risk-neutral probability 

density function (Φ) based on the implied 
volatility model, Eq. (3), is  

( ) ( ) ( ) ( )0 2 0 1 1 2 2, 1k F N d F d n d Kd n dτΦ = − + −  

where 
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Then the risk-neutral probability function (ϕ) is as 
follows:  

( ) ( ) ( )0 2 2 0 1 1, 2k F d n d F d n d
K

ϕ τ ∂Φ
= = − +
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The detailed proof of the proposition is explained 
in Appendix. For each τj we calibrate parameters a0, a1, 
and a2 through following objective function under no-
arbitrage conditions (Breeden and Litzenberger, 1978; 
Carr and Madan, 2005; Fengler, 2005): 

( ) ( ) 2model market

1
arg min , ,  

j

n

i j i j j i j
i

w k k
θ

τ τ
=

Σ − Σ∑      (4) 

{ }0 1 2 where , ,j j j
j a a aθ =  

subject to 

0 1, 0j ja a ≥     (5) 
( )( )model

0, , , , ,
0j

BS i j j i jr
C k k r F

e
K

τ
τ τ δ∂ Σ

− ≤ ≤
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       (6) 

( )( )model
0, , , 0i j j i jk k Fϕ τ τΣ ≥   (7) 

( )0max ,0F K− ≤  

( )( )model
0 0 , , , , ,jr

BS i j j i je C k k r F Fτ τ τ δΣ ≤  (8) 

In Eq. (4), Σj
market is the observed implied volatil-

ities for the moneyness ki and time to maturity τj, Σj
model. 

is the implied volatility computed by the perfect square 
function defined in Eq. (3), and wi is the weight of the 
difference between Σi

market and Σi
model . It is computed as 

the logarithm of the number of trading contracts for the 
ith option added to 1. After calibrating parameters a0

j, a1
j, 

and a2
j for τj, we include one more condition of the cal-

endar spread for τj+1 in the following way (Carr and Ma-
dan, 2005), optimizing the three parameters, a0

j+1, a1
j+1, 

and a2
j+1, with their initial values as a0

j, a1
j, and a2

j: 

( )( )model
01, 2, ,   , , , , ,BS i j j i ji n C k k r Fτ τ δ∀ = Σ ≤  

( )( )model
1 1 1 0 1, , , , , ,  if BS i j j i j j jC k k r Fτ τ δ τ τ+ + + +Σ ≥    (9) 

Through the optimization procedure referred above, 
we use the interior-point algorithm that is based on con-
jugate gradient calculations. The optimization method is 
explained in Appendix. 

3.2 Building Implied Volatility Surface with Two-
dimensional Cubic Spline 

In order to calculate the implied volatilities of the 
grid points, we establish the grid points of the forward-
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moneyness values, ki, and the time to maturities, τj. We 
choose the moneyness points, which are equally divided 
in some region, and set the time to maturities as the time 
to maturities of the real market data. We establish the 
grid points of the moneyness value and time to expiry in 
the following way: 

( )1 2 2m mγ τ τ τ η= < < < = ≥   (10) 
( )1 2 2mk k k mα β= < < < = ≥   (11) 

Then, we can calculate the implied volatilities of 
the grid points in each time to maturity from the pa-
rameter set, θj, calibrated in Eq. (4). Using the implied 
volatilities of the grid points, we can model the implied 
volatility surface using the two-dimensional cubic spline. 
The input vector X can be represented by 

( ), ,   1, 2, ,   and  1, 2, ,ij i jX k i n j mτ= = =  

This rectangle is subdivided into (n-1)(m-1) sub-
rectangles, Rij: 

( ){ }1 1, ,ij i i j jR k k k kτ τ τ τ+ += < < < <  

Then the implied volatilities, Σij, can be modeled 
using the two-dimensional cubic spline function as fol-
lows: 

( ) ( ) ( )
4 4 11

1 1
,

qp
ij ijpq i j

p q
k c k kτ τ τ

−−

= =

Σ = − −∑∑    (12) 

( ), ,  1, 2, , 1 and  1, 2, , 1ijk R i n j mτ ∈ = − = −  

We calculate the coefficients of the two-dimen-
sional cubic spline function utilizing the implied volatil-
ities of the grid points. The method is presented by de 
Boor (de Boor, 1962). It consists of several steps. At 
first, we consider the third-order bi-cubic function that 
has the subrectangle R on the interpolation nodes as grid 
points: 

( ) ( )

1

2
1 2 3 4

3

4

( )
( )

, ( ) ( ) ( ) ( )
( )
( )

j

j
ij i i i i
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g
g

τ
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τ
τ
τ

⎛ ⎞
⎜ ⎟
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⎜ ⎟⎜ ⎟
⎝ ⎠

  (13) 

where gip(k) = (k-ki)p-1, gjq(τ) = (τ-τj)q-1, and the coeffi-
cient matrix C is the following 4-by-4 matrix: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

=

ij ij ij ij

ij ij ij ij

ij ij ij ij

ij ij ij ij

c c c c
c c c c

C
c c c c
c c c c

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
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⎝ ⎠

 (14) 

Next, we determine the 16(n-1)(m-1) coefficients 
in Eq. (14). We can use the property that the implied 
volatility function (∑ij) satisfies the C2 requirements in 
the k and τ directions yield. To determine the mixed 

partial derivative at each node, we introduce the connec-
tion matrix J satisfying the below condition: 

( ) ( ) T

i jJ V k C V τ⎡ ⎤= ⎣ ⎦  

with 

, 1 , 1

, 1 , 1

1, 1, 1, 1 1, 1

1, 1, 1, 1 1, 1

ij ij i j i j

ij ij i j i j

i j i j i j i j

i j i j i j i j

u q u q
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u q u q
p r p r

+ +

+ +

+ + + + + +

+ + + + + +

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

      (15) 

In Eq. (15), each element is computed by Späth 
(Späth, 1995) and referred in Appendix. Then, we can 
make the connection matrix as follows: 

 
1 1,   i i i j j jk k k τ τ τ+ +Δ = − Δ = −  
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The inverse matrices of V(ki) and V(τj) can be cal-

culated as 
 

( ) ( ) ( )
( ) ( ) ( )

1
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1 0 0 0
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1 2 2 1
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i i i i
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Therefore, we can compute the coefficients of the 

two-dimensional cubic spline, using the following equa-
tion: 
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( ) ( )1 T

i jC V k J V τ
−− ⎡ ⎤= ⎡ ⎤⎣ ⎦ ⎣ ⎦    (16) 

We recognize that there can be an inverse problem 
in Eq. (16). In fact, the problem comes from selection of 
the number and location of the grid points, which affect 
fitting accuracy and smoothness of the two-dimensional 
cubic spline. When their number and location are opti-
mized, if possible, the approximation power of the two-
dimensional cubic spline is improved. However, finding 
them optimally is a historically difficult problem. To 
solve this problem, an approach such as estimation of 
free-knot splines has been proposed (Lindstrom, 1999). 

4.  NUMERICAL TEST 

4.1 Data Description and Screening 

We conduct two numerical tests, both of which are 
based on implied volatility data from market-quoted 
prices of S&P500 index European option. We acquire 
our original data sets from Thomson Datastream whose 
option database contains, on a specific day, the option 
style (call or put), the, strike price, the trading volume, 
the option expiration date, the opening, closing, low and 
high option’s price, and the settlement price. We take 
from this database, for the purpose of our study, the 
closing call options prices according to strike prices and 
expiration dates on two specific days. One is May 18th, 

2007 and the other June 12th, 2007. The index value is 
1522.75 on the first day and 1493.00 on the second day. 
We assume that we have 252 trading days in a year. The 
two data sets we choose are screened in order to elimi-
nate the data errors. Firstly, we preclude data where the 
time to expiry is less than 6 days, since the implied vola-
tility fluctuate very severely even on small error in the 
corresponding option price (Bakshi et al., 1997; Skiado-
poulos et al., 1999). Secondly, we exclude the entire 
options that belong to a time to expiry where there are 
less than 10 strike prices with non-zero contracts traded. 
Thirdly, we choose data only with the ratio of strike 
price to spot price ranging from 0.8 to 1.2. Last, we take 
out from our numerical tests the options with their prices 
less than their intrinsic values because we know that this 
is an obvious arbitrage opportunity. After screening our 
data, we obtain, for 84 strike prices, the option data set 
consisting of implied volatility and option price quoted 
by market on the first day. On the second day, we have 
it for 88 strike prices. Table 1 tells how many strike 
prices it comprises for each time to maturity in detail on 
each of the two days. 

4.2 Test Results 

4.2.1 Result on Data set (I) 
To begin with, we construct the implied volatility 

curve for each time to maturity without the arbitrage-
free conditions from Eq. (6) to Eq. (9). In other words, 
we calibrate the three parameters, a0, a1, and a2, in Eq. (4) 

 
Figure 1. Data Set (I): Market-quoted implied volatilities and Model volatilities fitted from Eq. (4) and Eq. (5) 
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only with the boundary constraint, Eq. (5). However, the 
initial parameter setting can influence the calibration. 
Therefore, after generating 100 initial parameter sets 
randomly from unit uniform distribution, we conduct it 
for each of them. Then, we calculate the mean parameter 
set from the 100 calibrated parameter sets. We put pa-
rameter calibration results in Table 2. Figure 1 shows 
the fitting result computed from the mean parameter set 
for each of four times to maturity. In the Figure, the red 
crosses and the black circles mean the implied volatil-
ities fitted from Eq. (4) and Eq. (5) and those quoted in 
the option market, respectively. Seemingly, our model 
fits the market data quite well for each time to maturity. 
However, when we put the four results in Figure 1 to-
gether into one figure (Figure 2) in the viewpoint of 
option price, we can recognize that the results yield an 
arbitrage. In Figure 2 and Figure 3, the blue color, the 
red color, the black color, and cyan color indicate the 
shortest time maturity to the longest maturity in order. 
The crosses mean the option prices calculated by our 
model and the circles do the quoted option prices. In 
particular, let us see Figure 3, which zooms the large 
black circle in the left upper part of Figure 2. Then, in 
the in-the-money (small log forward-moneyness) area, 
our model shows that the option price of the blue circle 
is larger than that of the red and the black for the same 
moneyness. This means that our model violates the cal-
endar-spread constraint. Therefore, we need to utilize 
the constraints referred above. 

Next, we build the curves again, including the con-

straints from Eq. (6) to Eq. (9), producing Figure 4, Fig-
ure 5, and Figure 6. In the first two figures, each mark 
has the same meaning with Figure 1 and Figure 2. Fig-
ure 3 also shows that each of the rebuilt curves reflects 
the quoted implied volatilities well. Moreover, when we 
see Figure 5 and Figure 6, we cannot observe that the 
option price of the blue circle is larger than that of the 
red or that of the black for the same moneyness. Of 
course, it is also certain that that of the red is smaller 
than that of the black. In other words, our model with 
the constraints from Eq. (6) to Eq. (9) constructs the 
curves free of any arbitrage opportunity. Moreover, we 
compare our two models in viewpoint of calibration 
performance. To this end, we make use of two perform-
ance measures, which are average MSE (Mean Squared 
Error) of option price and that of implied volatility. We 
put calibration performance results in Table 3. As seen 
in Table 3, our model with the four constraints shows 
better performance than without them. 

Lastly, we construct the implied volatility surface 
(IVS), using the two-dimensional cubic spline function, 
Eq. (12), with the grid points as implied volatilities gen-
erated from the fitted curves. Figure 7 and Figure 8 
show the constructed IVS (black-colored surface) to-
gether with the market-quoted implied volatilities (red 
circles). The first comes from our model with none of 
the arbitrage-free constraints and the second from our 
model obtained using them. Both of the surfaces seem to 
capture well the original quoted implied volatilities. In 
order to compare the two figures, let us cut them at the 

Figure 3 

 
Figure 2. Data Set (I): Comparison of the level of option prices calculated using fitted implied volatilities in Figure 1 

Figure 3 

 
Figure 2. Data Set (I): Comparison of the level of option prices calculated using fitted implied volatilities in Figure 1. 
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three largest-moneyness values, and then the IVS with-
out them shows more substantial fluctuation with time 

to maturity than with them. The existing study on impli-
ed volatility argues that its smiley or skewed property 

 

Figure 3. Data Set (I): Arbitrage Opportunity yielded by our model without arbitrage-free constraints. 
 

 
Figure 4. Data Set (I): Market-quoted implied volatilities and Model volatilities fitted from Eq. (4) to Eq. (9). 
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flattens with time to maturity (Cont and da Fonseca, 2002; 
Cont and Tankov, 2004). Therefore, the IVS in Figure 8, 

that is, our model with the constraints shows better cali-
bration. 

Figure 6 

 
Figure 5. Data Set (I): Comparison of the level of option prices calculated using fitted implied volatilities in Figure 4. 

 

 

Figure 6. Data Set (I): Arbitrage Opportunity removed by our model with the constraints from Eq. (5) to Eq. (9). 
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Figure 7. Data Set (I): Implied volatility surface using the 

curves built from only Eq. (4) and Eq. (5). 
 

 
 

Figure 8. Data Set (I): Implied volatility surface using the 
curves built from Eq. (4) to Eq. (9). 

Table 1. Screened data sets. 

Observation  
Date 

Time to maturity 
(days) 

Number of 
Strike Prices 

21 42 
46 19 
91 12 

May 18th 
- Data Set (I) 

156 11 
29 44 
49 12 
74 18 

June 12th 

- Data Set (II) 
139 14 

 
4.2.2 Result on Data set (II) 

Again, we apply our model to Data set (II). The 
data set is observed on 12 June 2007 and also includes 
the implied volatilities related to S&P500 index option 
like Data set (I) as seen Table 1. We obtain the results 
corresponding to Section 4.2.1. We see in Figure 10 and 
Figure 11 that each curve (red crosses) matches with the 
market-implied volatilities well, and in Figure 12 and 
Figure 13 that there appears no calendar-spread arbitrage 
when we compare the four implied volatility curves every 
forward-moneyness one another. However, like Data Set 
(I), we have better calibration performance in the model 
with the arbitrage-free constraints than without them. 
We also have the calibration results for Data Set (II) in 
Table 2 and Table 3. We construct the two implied vola-
tility surfaces, Figure 14 and Figure 15, and compare 

 

Figure 9. Data Set (I): Implied volatility surfaces cut at log forward-moneyness direction  
            (black lines: use of arbitrage-free constraints, red lines: no use of arbitrage-free constraints). 
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them, cutting them at log forward-moneyness direction. Let us see Figure 16, and then we can see that the IVS 

 

Figure 10. Data Set (II): Market-quoted implied volatilities and Model volatilities fitted from Eq. (4) and Eq. (5). 
 

 

Figure 11. Data Set (II): Market-quoted implied volatilities and Model volatilities fitted from Eq. (4) to Eq. (9). 
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without the constraints generates negative volatility 
values and the IVS with them does not. Therefore, we 

argue that our model with the four arbitrage-free con-
straints performs better than that without them. 

 

Figure 12. Data Set (II): Comparison of the level of option prices calculated using fitted implied volatilities in Figure 10.
 

 
Figure 13. Data Set (II): Comparison of the level of option prices calculated using fitted implied volatilities in Figure 11.
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5.  CONCLUSION 

In this paper we proposed a model, which builds an 
IVS using a two-dimensional cubic spline function with 
its grid points given as implied volatilities computed by 
optimizing an objective function with the four arbitrage-
free conditions from Eq. (6) to Eq. (9). Through all of 
the optimization processes, we used the interior-point 
method with the gradients computed from our objective 
function and nonlinear constraints. To verify the per-
formance of our proposed model, we conducted our 
simulations with S&P500 European option data we take 

from Thomson Datastream. In the results of our two 
data sets, we showed that, before the IVS construction, 
the implied volatility curves from our proposed model 
fit well the quoted volatility data without any arbitrage 
whatever log forward-moneyness or time to maturity in 
the data sets. Moreover, when establishing the volatility 
surfaces from the grid points formed by the implied 
volatility curves, we made sure that the surfaces not 
only match the original quoted volatility data but also 
produce no negative volatility. Furthermore, they satisfy 
the smiley or skewed phenomenon at short maturity and 
its flattening effect at longer maturity. However, we 

Figure 14. Data Set (II): Implied volatility surface using the 
curves built from only Eq. (4) and Eq. (5). 

Figure 15. Data Set (II): Implied volatility surface using the 
curves built from Eq. (4) to Eq. (9). 

 
Figure 16. Data Set (II): Implied volatility surfaces cut at log forward-moneyness direction 

        (black lines: use of arbitrage-free constraints, red lines: no use of arbitrage-free constraints). 
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need further studies on how to choose grid points auto-
matically and correct the rectangle avoiding negative 
implied volatility and the fluctuation of IVS. Incorporat-
ing kernel-based method in leaves to be further investi-
gated as well (Kim et al., 2009; Lee and Lee, 2005; Lee 
and Lee, 2006; Lee and Lee, 2007; Lee and Lee, 2007; 
Lee et al., 2009). 

 
Table 2. Parameter Calibration Result. 

 
Mean 

Calibrated 
Parameter 

Time to Maturity (Days) 

No Arbitrage 
Constraint 21 46 91 156 

a0 0.0082 0.0067 0.0021 0.0033

a1 2.3654 0.5506 0.0932 0.1058

a2 0.0305 0.1111 0.3878 0.3548
Arbitrage 
Constraint  

a0 0.0082 0.0086 0.0007 0.0005

a1 2.3715 0.761 0.1137 0.0862

May 
18th 

a2 0.0304 0.0724 0.3616 0.4282
No Arbitrage 

Constraint 29 49 74 139 

a0 0.0123 0.0139 0.0109 0.0113

a1 1.6732 2.2504 1.0537 0.4048

a2 0.0828 0.0566 0.1227 0.1696
Arbitrage 
Constraint  

a0 0.0126 0.0139 0.012 0.0119

a1 1.7082 2.2634 1.145 0.4189

June 
12th 

a2 0.0798 0.0563 0.1042 0.1584
 
Table 3. Comparison of Calibration Performance. 

 Performance 
Measure 

No Arbitrage-free 
Constraint 

Arbitrage-free
Constraint 

Average MSE 
of Option Price 1.7617 1.6111 May 

18th Average MSE 
of Implied Vol. 0.0118 0.0118 

Average MSE 
of Option Price 3.0681 2.9234 

June 
12th Average MSE 

of Implied Vol. 0.0133 0.0134 
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APPENDIX 

1. Proof of Proposition 

If, in order to calculate an European call option, we 

set its present underlying asset value, strike price, time 
to maturity, and probability density function as S0, K, τ, 
and ϕ, respectively, the call option value (V) can be 
expressed as 

 
( ) ( )

( ) ( )
0 0

00

, , , ,

                 max , 0 , , 0τ
τ τ τ

τ τ

ϕ τ
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= −∫r
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Then, 
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( )0, , 0r Ve K K S
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K

S S dS K K Sτ τϕ τ ϕ τ
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− +∫  

( )0, , 0
K

S S dSτ τϕ τ
+∞

= −∫  

( ) ( )0 0, , 0 1 , , 0 1
K

S S dS K Sτ τϕ τ τ
−∞

= − = Φ −∫  (A1) 
 

Moreover, using the forward price of underlying 
asset, F0, we can also represent the option value as  

 
( ) ( ){ }0 1 2

rV e F N d KN dτ−= −  
 

Therefore,  

( ) ( ) ( )2 0 1 1 2 2
r Ve N d F d n d Kd n d

K
τ ∂ = − + −
∂

 

Inserting this result into the result noted by Eq. (A-
1), we obtain 

( ) ( ) ( ) ( )0 2 0 1 1 2 2, 1k F N d F d n d Kd n dτΦ = − + −  

Then, the remaining results can be attained obvi-
ously with simple derivative calculations.          □ 

2. Interior-point Algorithm with CG (Conjugate 
Gradient) 

The interior-point approach to constrained minimi-
zation is to solve a sequence of approximate minimiza-
tion problems.  

The original problem is 

( ) ( ) ( )min ,  subject to 0 and 0
x

f x h x g x= ≤  (A-2) 

For each μ > 0, we can approximate the problem 
(A-2) in the following way: 

( ) ( ) ( )
, ,

  min , min ln ix x s i
f x s f x sμμ

μ= − ∑  

( ) ( )subject to 0, 0,  and 0h x g x s s= + = >     (A-3) 
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The number of dimension of the inequality con-
straint g(x) is the same with that of the slack variable s. 
As μ approaches to zero, the minimum of fμ should go 
toward the minimum of f. The added logarithmic term is 
called a barrier function. This algorithm is explained in 
Byrd et al., 2000; Byrd et al., 1999, and Waltz et al., 
2006. The approximate problem (A-3) is transformed 
into a sequence of equality-constrained problems. One 
of the solutions to (A-3) is to use the conjugate gradient 
approach. In this case, we adjust both x and s, keeping s 
positive. The approach is to minimize a quadratic ap-
proximation to the problem (A-3) in a trust region, sub-
ject to linearized constraints. Specifically, let R denote 
the radius of the trust region, then we acquire Lagrange 
multipliers (λ and y) by approximately solving the KKT 
equations: 

( ) ( ) ( ) 0x x i i i j
i j

L f x g x y h xλ∇ = ∇ + ∇ + ∇ =∑ ∑  (A-4) 

in the least-squares sense, subject to λ being positive. 
Then we take a step (Δx, Δs) to approximately solve 

2 1 1

,

1 1min 1
2 2

T T T T
xxx s

f x x L x S s s S sμ − −

Δ Δ
∇ Δ + Δ ∇ Δ + Δ + Δ ΛΔ (A-5) 

subject to the linearized constraints 

( ) ( )0,   0g hg x J x s h x J x+ Δ + Δ = + Δ =   (A-6) 

In Eq. (A-5) and Eq. (A-6), 1 is a vector of ones the 
same size with g(x), S and Λ are diagonal matrices 
with s and λ, respectively, and Jg and Jh are the Jacobian 
of the constraint g(x) and h(x), respectively. Then, in 
order to solve Eq. (A-6), we try to minimize a norm of 
the linearized constraints inside a region with radius 
scaled by R. Eq. (A-5) is solved with the constraints 
being to match the residual from solving Eq. (A-6), stay-
ing within the trust region of radius R, and keeping s 
strictly positive. 

3. Connection Matrix J 
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Each element of the above matrix J is calculated as 

follows: 
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