• Title/Summary/Keyword: Cube Structures

Search Result 78, Processing Time 0.038 seconds

Fabrication of three-dimensional electrical patterns by swollen-off process: An evolution of the lift-off process

  • Mansouri, Mariam S.;An, Boo Hyun;Shibli, Hamda Al;Yassi, Hamad Al;Alkindi, Tawaddod Saif;Lee, Ji Sung;Kim, Young Keun;Ryu, Jong Eun;Choi, Daniel S.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1235-1239
    • /
    • 2018
  • We present a novel process to fabricate three-dimensional (3D) metallic patterns from 3D printed polymeric structures utilizing different hygroscopic swelling behavior of two different polymeric materials. 3D patterns are printed with two different polymers as cube shape. The surface of the 3D printed polymeric structures is plated with nickel by an electroless plating method. The nickel patterns on the surface of the 3D printed cube shape structure are formed by removing sacrificial layers using the difference in the rate of hygroscopic swelling between two printing polymer materials. The hygroscopic behavior on the interfaced structure was modeled with COMSOL Multiphysics. The surface and electrical properties of the fabricated three-dimensional patterns were analyzed and characterized.

Comparison of several computational turbulence models with full-scale measurements of flow around a building

  • Wright, N.G.;Easom, G.J.
    • Wind and Structures
    • /
    • v.2 no.4
    • /
    • pp.305-323
    • /
    • 1999
  • Accurate turbulence modeling is an essential prerequisite for the use of Computational Fluid Dynamics (CFD) in Wind Engineering. At present the most popular turbulence model for general engineering flow problems is the ${\kappa}-{\varepsilon}$ model. Models such as this are based on the isotropic eddy viscosity concept and have well documented shortcomings (Murakami et al. 1993) for flows encountered in Wind Engineering. This paper presents an objective assessment of several available alternative models. The CFD results for the flow around a full-scale (6 m) three-dimensional surface mounted cube in an atmospheric boundary layer are compared with recently obtained data. Cube orientations normal and skewed at $45^{\circ}$ to the incident wind have been analysed at Reynolds at Reynolds number of greater than $10^6$. In addition to turbulence modeling other aspects of the CFD procedure are analysed and their effects are discussed.

Large eddy simulation of the tornado-structure interaction to determine structural loadings

  • Panneer Selvam, R.;Millett, Paul C.
    • Wind and Structures
    • /
    • v.8 no.1
    • /
    • pp.49-60
    • /
    • 2005
  • A tornado changes its wind speed and direction rapidly; therefore, it is difficult to study the effects of a tornado on buildings in a wind tunnel. The status of the tornado-structure interaction and various models of the tornado wind field found in literature are surveyed. Three dimensional computer modeling work using the turbulence model based on large eddy simulation is presented. The effect of a tornado on a cubic building is considered for this study. The Navier-Stokes (NS) equations are approximated by finite difference method, and solved by an semi-implicit procedure. The force coefficients are plotted in time to study the effect of the Rankine combined vortex model. The tornado is made to translate at a $0^{\circ}$ and $45^{\circ}$ angle, and the grid resolution is refined. Some flow visualizations are also reported to understand the flow behavior around the cube.

Spatial Representation of Geometrical Relations in the Drawings of Young Children (유아의 기하학적 구성물의 그리기 작업에 대한 연구)

  • Hong, Hae Kyung
    • Korean Journal of Child Studies
    • /
    • v.22 no.2
    • /
    • pp.315-327
    • /
    • 2001
  • This study investigated young children's spatial representation of geometrical relations based on their drawings of cube buildings. One hundred seventy-six children from 3 to 6 years of ages were selected from private kindergartens and day care centers. Their drawings were classified into 6 developmental levels: level 1 - drawings show only scribbles or several circles; level 2 - drawings show plane squares from a front view; level 3 - positional relations are included in the drawings; level 4 - separate-joint relations or the general outline of a cube building are shown; level 5 - rotated drawing and an additional square for hidden faces are attempted to represent the lateral view; level 6 - parallel lines are drawn to represent 3-dimensional structures. Three-to four-year-olds were between levels 1 and 2; four-to six-year olds were between levels 3 and 4; and children over six years old were between levels 3 and 5.

  • PDF

A 6 m cube in an atmospheric boundary layer flow -Part 2. Computational solutions

  • Richards, P.J.;Quinn, A.D.;Parker, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.177-192
    • /
    • 2002
  • Computation solutions for the flow around a cube, which were generated as part of the Computational Wind Engineering 2000 Conference Competition, are compared with full-scale measurements. The three solutions shown all use the RANS approach to predict mean flow fields. The major differences appear to be related to the use of the standard $k-{\varepsilon}$, the MMK $k-{\varepsilon}$ and the RNG $k-{\varepsilon}$ turbulence models. The inlet conditions chosen by the three modellers illustrate one of the dilemmas faced in computational wind engineering. While all modeller matched the inlet velocity profile to the full-scale profile, only one of the modellers chose to match the full-scale turbulence data. This approach led to a boundary layer that was not in equilibrium. The approach taken by the other modeller was to specify lower inlet turbulent kinetic energy level, which are more consistent with the turbulence models chosen and lead to a homogeneous boundary layer. For the $0^{\circ}$ case, wind normal to one face of the cube, it is shown that the RNG solution is closest to the full-scale data. This result appears to be associated with the RNG solution showing the correct flow separation and reattachment on the roof. The other solutions show either excessive separation (MMK) or no separation at all (K-E). For the $45^{\circ}$ case the three solutions are fairly similar. None of them correctly predicting the high suctions along the windward edges of the roof. In general the velocity components are more accurately predicted than the pressures. However in all cases the turbulence levels are poorly matched, with all of the solutions failing to match the high turbulence levels measured around the edges of separated flows. Although all of the computational solutions have deficiencies, the variability of results is shown to be similar to that which has been obtained with a similar comparative wind tunnel study. This suggests that the computational solutions are only slightly less reliable than the wind tunnel.

Design of a Metamaterial-Based Low-Profile Antenna Mounted on LEO/Cube Satellites (저궤도 큐브위성 탑재용의 메타물질형 저자세 안테나의 설계)

  • Han, Dajung;Lee, Changhyeong;Park, Heejun;Lee, Jihye;Kahng, Sungtek
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.94-100
    • /
    • 2017
  • In this paper, we suggest a design method of a metamaterial-based low-profile antenna working at 425 MHz for LEO/Cube satellites. Satellites play an important role in linking th remote nodes in a wireless communication network and covering wide areas of the globe. Especially, an increasing number of universities or individuals aspire having their own satellites and build low-budget structures such as cube satellites in LEO and the ways to reduce the sizes of their satellites. Since the antenna occupies a major portion of the satellite surface, the antenna should be miniaturized for lighter weight. The proposed metamaterial low-profile antenna, unlike the conventional patch antenna, produces such a zeroth-order resonance to create an omnidirectional radiation pattern. Also, it is connected to a UHF waveguide bandpass filter as the feeding system to examine the possible change in the situation that the antenna is combined with the system. The performances of the monopole and proposed metamaterial antennas are compared to one another.

Augmenting external surface pressures' predictions on isolated low-rise buildings using CFD simulations

  • Md Faiaz, Khaled;Aly Mousaad Aly
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.255-274
    • /
    • 2023
  • The aim of this paper is to enhance the accuracy of predicting time-averaged external surface pressures on low-rise buildings by utilizing Computational Fluid Dynamics (CFD) simulations. To achieve this, benchmark studies of the Silsoe cube and the Texas Tech University (TTU) experimental building are employed for comparison with simulation results. The paper is structured into three main sections. In the initial part, an appropriate domain size is selected based on the precision of mean pressure coefficients on the windward face of the cube, utilizing Reynolds Averaged Navier-Stokes (RANS) turbulence models. Subsequently, recommendations regarding the optimal computational domain size for an isolated building are provided based on revised findings. Moving on to the second part, the Silsoe cube model is examined within a horizontally homogeneous computational domain using more accurate turbulence models, such as Large Eddy Simulation (LES) and hybrid RANS-LES models. For computational efficiency, transient simulation settings are employed, building upon previous studies by the authors at the Windstorm Impact, Science, and Engineering (WISE) Lab, Louisiana State University (LSU). An optimal meshing strategy is determined for LES based on a grid convergence study. Three hybrid RANS-LES cases are investigated to achieve desired enhancements in the distribution of mean pressure coefficients on the Silsoe cube. In the final part, a 1:10 scale model of the TTU building is studied, incorporating the insights gained from the second part. The generated flow characteristics, including vertical profiles of mean velocity, turbulence intensity, and velocity spectra (small and large eddies), exhibit good agreement with full-scale (TTU) measurements. The results indicate promising roof pressures achieved through the careful consideration of meshing strategy, time step, domain size, inflow turbulence, near-wall treatment, and turbulence models. Moreover, this paper demonstrates an improvement in mean roof pressures compared to other state-of-the-art studies, thus highlighting the significance of CFD simulations in building aerodynamics.

Geophysical Implications for Configurational Entropy and Cube Counting Fractal Dimension of Porous Networks of Geological Medium: Insights from Random Packing Simulations (지질매체 공극 구조에 대한 구성 엔트로피와 상자집계 프랙탈 차원의 지구물리학적 의미 및 응용: 무작위 패킹 시뮬레이션 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2010
  • Understanding the interactions between earth materials and fluids is essential for studying the diverse geological processes in the Earth's surface and interior. In order to better understand the interactions between earth materials and fluids, we explore the effect of specific surface area and porosity on structural parameters of pore structures. We obtained 3D pore structures, using random packing simulations of porous media composed of single sized spheres with varying the particle size and porosity, and then we analyzed configurational entropy for 2D cross sections of porous media and cube counting fractal dimension for 3D porous networks. The results of the configurational entropy analysis show that the entropy length decreases from 0.8 to 0.2 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$, and the maximum configurational entropy increases from 0.94 to 0.99 with increasing porosity from 0.33 to 0.46. On the basis of the strong correlation between the liquid volume fraction (i.e., porosity) and configurational entropy, we suggest that elastic properties and viscosity of mantle melts can be expressed using configurational entropy. The results of the cube counting fractal dimension analysis show that cube counting fractal dimension increases with increasing porosity at constant specific surface area, and increases from 2.65 to 2.98 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$. On the basis of the strong correlation among cube counting fractal dimension, specific surface area, and porosity, we suggest that seismic wave attenuation and structural disorder in fluid-rock-melt composites can be described using cube counting fractal dimension.

Corrosion Protection Systems on Reinforcement Steep in Marine Concrete Structures (해양콘크리트 구조물의 철근방식 기법에 관한 실험연구)

  • 한기훈;장지원;이강균;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.265-271
    • /
    • 1997
  • Marine concrete structures have been exposed to salt from ocean environments. Chloride-penetration into marine concrete structures should accelerate the corrosion of reinforcement steel, which may severely affect the durability of them. Major concerns are to develop durable concrete for high corrosion resistance of reinforcing steel embedded in concrete. The objective of this experimental study is to investigate adequate usage of corrosion inhibitors by evaluating corrosion level in 80 specimen located in the labatory and in the site. 80 specimen of cube 20${\times}$20${\times}$11.5 and 63 specimen of slab 30${\times}$30${\times}$10 are made for this study.

  • PDF

Dynamic Response Analysis of Twisted High-Rise Structures according to the Core Location Change (코어 위치 변화에 따른 비틀림 초고층 구조물의 동적응답분석)

  • Chae, Young-Won;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.17-24
    • /
    • 2022
  • Currently, the construction trend of high-rise structures is changing from a cube-shaped box to a free-form. In the case of free-form structures, it is difficult to predict the behavior of the structure because it induces torsional deformation due to inclined columns and the eccentricity of the structure by the horizontal load. For this reason, it is essential to review the stability by considering the design variables at the design stage. In this paper, the position of the weak vertical member was analyzed by analyzing the behavior of the structure according to the change in the core position of the twisted high-rise structures. In the case of the shear wall, the shear force was found to be high in the order of proximity to the center of gravity of each floor of the structure. In the case of the column, the component force was generated by the axial force of the outermost beam, so the bending moment was concentrated on the inner column with no inclination.