• 제목/요약/키워드: CuSn

검색결과 1,102건 처리시간 0.026초

Sn-3.0Ag-0.5Cu 및 Sn-1.0Ag-0.5Cu 조성의 솔더 볼을 갖는 플립칩에서의 보드레벨 낙하 해석 (Board-Level Drop Analyses having the Flip Chips with Solder balls of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.5Cu)

  • 김성걸
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.193-201
    • /
    • 2011
  • Recently, mechanical reliabilities including a drop test have been a hot issue. In this paper, solder balls with new components which are Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.5Cu-0.05N are introduced, and board level drop test for them are conducted under JEDEC standard in which the board with 15 flip chips is dropped as 1,500g acceleration during 0.5ms. The drop simulations are studied by using a implicit method in the ANSYS LS-DYNA, and modal analysis is made. Through both analyses, the solder balls with new components are evaluated under the drop. It is found that the maximum stress of each chip is occurred between the solder ball and the PCB, and the highest value among the maximum stresses in the chips is occurred on the chip nearest to fixed holes on the board in the drop tests and simulations.

Cu-Sn합금의 미세조직과 기계적 특성에 미치는 템퍼링 온도 및 시간의 영향 (Effects of Tempering Temperature and Time on Microstructure and Mechanical Property of Cu-Sn Alloy)

  • 정무섭;이호형;한준현
    • 열처리공학회지
    • /
    • 제33권2호
    • /
    • pp.65-71
    • /
    • 2020
  • To study the effects of tempering on microstructure and mechanical property of Cu-22 wt.%Sn alloy, tempering was carried out for 30 sec, 1 min, 5 min, 30 min, 3 h, 5 h, and 10 h at 325, 370, 500, and 570℃, which are in the (α+ε), lower (α+δ), higher (α+δ), and (α+γ) region of Cu-Sn phase diagram, respectively. Overall, the hardness value increased and decreased over time at all tempering temperatures, and the time to reach the maximum hardness value beccame shorter as the tempering temperature increases. At the beginning of tempering at each temperature, a portion of the β' phase was decomposed into a fine (α+δ) phase or (α+γ) phase, so that the Cu-22Sn alloy had a high hardness value. However, as the tempering time increases, the hardness value of the alloy decreased due to the growth of the decomposed phases.

Selenization 온도가 Cu2ZnSnSe4 박막의 특성에 미치는 영향 (Influence of Selenization Temperature on the Properties of Cu2ZnSnSe4 Thin Films)

  • 여수정;강명길;문종하;김진혁
    • Current Photovoltaic Research
    • /
    • 제3권3호
    • /
    • pp.97-100
    • /
    • 2015
  • The kesterite $Cu_2ZnSnSe_4$ (CZTSe) thin film solar cells were synthesized by selenization of sputtered Cu/Sn/Zn metallic precursors on Mo coated soda lime glass substrate in Ar atmosphere. Cu/Sn/Zn metallic precursors were deposited by DC magnetron sputtering process with 30 W power at room temperature. As-deposited metallic precursors were placed in a graphite box with Se pellets and selenized using rapid thermal processing furnace at various temperature ($480^{\circ}C{\sim}560^{\circ}C$) without using a toxic $H_2Se$ gas. Effects of Selenization temperature on the morphological, crystallinity, electrical properties and cell efficiency were investigated by field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD), J-V measurement system and solar simulator. Further details about effects of selenization temperature on CZTSe thin films will be discussed.

Characterization of ZnO Nanorods and SnO2-CuO Thin Film for CO Gas Sensing

  • Lim, Jae-Hwan;Ryu, Jee-Youl;Moon, Hyung-Sin;Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권6호
    • /
    • pp.305-309
    • /
    • 2012
  • In this study, ZnO nanorods and $SnO_2$-CuO heterogeneous oxide were grown on membrane-type gas sensor platforms and the sensing characteristics for carbon monoxide (CO) were studied. Diaphragm-type gas sensor platforms with built-in Pt micro-heaters were made using a conventional bulk micromachining method. ZnO nanorods were grown from ZnO seed layers using the hydrothermal method, and the average diameter and length of the nanorods were adjusted by changing the concentration of the precursor. Thereafter, $SnO_2$-CuO heterogeneous oxide thin films were grown from evaporated Sn and Cu thin films. The average diameters of the ZnO nanorods obtained by changing the concentration of the precursor were between 30 and 200 nm and the ZnO nanorods showed a sensitivity value of 21% at a working temperature of $350^{\circ}C$ and a carbon monoxide concentration of 100 ppm. The $SnO_2$-CuO heterogeneous oxide thin films showed a sensitivity value of 18% at a working temperature of $200^{\circ}C$ and a carbon monoxide concentration of 100 ppm.

저온 브레이징용 Al-Si-Cu 합금의 Sn 첨가에 따른 융점 및 기계적 특성 변화 연구 (Effect of Tin Addition on the Melting Temperatures and Mechanical Properties of Al-Si-Cu Brazing Filler Metals)

  • 김민상;박천웅;변종민;김영도
    • 한국재료학회지
    • /
    • 제26권7호
    • /
    • pp.376-381
    • /
    • 2016
  • For the development of a low-melting point filler metal for brazing aluminum alloy, we analyzed change of melting point and wettability with addition of Sn into Al-20Cu-10Si filler metal. DSC results showed that the addition of 5 wt% Sn into the Al-20Cu-10Si filler metal caused its liquidus temperature to decrease by about 30 oC. In the wettability test, spread area of melted Al-Cu-Si-Sn alloy is increased through the addition of Sn from 1 to 5 wt%. For the measuring of the mechanical properties of the joint region, Al 3003 plate is brazed by Al-20Cu-10Si-5Sn filler metal and the mechanical property is measured by tensile test. The results showed that the tensile strength of the joint region is higher than the tensile strength of Al 3003. Thus, failure occurred in the Al 3003 plate.

Cu층 증착시간에 따른 Cu2ZnSnS4 (CZTS) 박막의 특성 (Characterization of the Cu-layer deposition time on Cu2ZnSnS4 (CZTS) Thin Film Solar Cells Fabricated by Electro-deposition)

  • 김윤진;김인영;강명길;문종하;김진혁
    • Current Photovoltaic Research
    • /
    • 제4권1호
    • /
    • pp.16-20
    • /
    • 2016
  • $Cu_2ZnSnS_4$ (CZTS) thin films were fabricated by successive electrodeposition of layers of precursor elements followed by sulfurization of an electrodeposited Cu-Zn-Sn precursor. In order to improve quality of the CZTS films, we tried to optimize the deposition condition of absorber layers. In particular, I have conducted optimization experiments by changing the Cu-layer deposition time. The CZTS absorber layers were synthesized by different Cu-layer conditions ranging from 10 to 16 minutes. The sulfurization of Cu/Sn/Zn stacked metallic precursor thin films has been conducted in a graphite box using rapid thermal annealing (RTA). The structural, morphological, compositional, and optical properties of CZTS thin films were investigated using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and X-ray Flourescenece Spectrometry (XRF). Especially, the CZTS TFSCs exhibits the best power conversion efficiency of 4.62% with $V_{oc}$ of 570 mV, $J_{sc}$ of $18.15mA/cm^2$ and FF of 45%. As the time of deposition of the Cu-layer to increasing, the properties were confirmed to be systematically changed. And we have been discussed in detail below.

H2S Gas Sensing Properties of SnO2:CuO Thin Film Sensors Prepared by E-beam Evaporation

  • Sohn, Jae-Cheon;Kim, Sung-Eun;Kim, Zee-Won;Yu, Yun-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권4호
    • /
    • pp.135-139
    • /
    • 2009
  • $H_2S$ micro-gas sensors have been developed employing $SnO_2$:CuO composite thin films. The films were prepared by e-beam evaporation of Sn and Cu metals on silicon substrates, followed by oxidation at high temperatures. Results of various studies, such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) reveal that $SnO_2$ and CuO are mutually non-reactive. The CuO grains, which in turn reside in the inter-granular regions of $SnO_2$, inhibit grain growth of $SnO_2$ as well as forming a network of p-n junctions. The film showed more than a 90% relative resistance change when exposed to $H_2S$ gas at 1 ppm in air at an operating temperature of $350^{\circ}C$ and had a short response time of 8 sec.

Sn/Cu 도금액의 보충이 도금제품의 도금피막특성에 미치는 영향 (The Supplement of Sn/Cu, Plating Solution Affects in Plating Skim Quality of the Plating Product)

  • 전택종;고준빈;이동주
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.112-119
    • /
    • 2009
  • The purpose of this study is to evaluate the evaluation of process yield performed by using Sn & Cu treatment on the surface to optimize process condition for Lead-free solder application. The materials which are used for the New Surface Treatment study are Semi-Dulling plating for high speed Sn/Cu alloy of Soft Alloy GTC-33 Pb free known as "UEMURA Method" and plating substrate is alloy 42.Especially in lead-free plating process, it is important to control plating thickness and Copper composition than Sn/Pb plating. Evaluated and controlled plating thickness $12{\pm}3um$, Copper composition $2{\pm}1%$, plating particle and visual inspection. The optimization of these parameters and condition makes it makes possible to apply Sn/Cu Lead-free solder from Sn/Pb alloy.

Ti/Cu/Au UBM의 Au 두께와 리플로우 온도에 따른 Sn-52In 솔더와의 계면반응 및 전단 에너지 (Interfacial Reaction and Shear Energy of Sn-52In Solder on Ti/Cu/Au UBM with Variation of Au Thickness and Reflow Temperature)

  • 최재훈;전성우;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제12권1호
    • /
    • pp.87-93
    • /
    • 2005
  • Au 층의 두께를 $0.1{\~}0.7{\mu}m$로 변화시킨 $0.1{\mu}m$ Ti/3 ${\mu}m$ Cu/Au UBM 상에서 48Sn-52In 솔더를 $150-250^{\circ}C$의 온도 범위에서 리플로우시 UBM/솔더 반응에 의한 금속간화합물의 형성거동을 분석하였다. 또한 Ti/Cu/Au UBM의 Au 두께 및 리플로우 온도에 따른 볼 전단강도와 전단에너지를 분석하였다. $150^{\circ}C$$200^{\circ}C$에서 리플로우 시에는 UBM/솔더 계면에 $Cu_6(Sn,In)_5$$AuIn_2$ 금속간 화합물이 형성되어 있으나, $250^{\circ}C$에서 리플로우 시에는 솔더 반응이 크게 증가하여 UBM이 대부분 소모되었다. 볼 전단강도는 UBM/솔더 반응과 일치하지 않는 결과를 나타내었으나, 전단 에너지는 UBM/솔더 반응과 잘 일치하는 변화 거동을 나타내었다.

  • PDF

Sn-1.7Bi-0.7Cu-0.6In 솔더의 특성 연구 (Characteristics of Sn-1.7Bi-0.7Cu-0.6In Lead-free Solder)

  • 박지호;이희열;전지헌;전주선;정재필
    • Journal of Welding and Joining
    • /
    • 제26권5호
    • /
    • pp.43-48
    • /
    • 2008
  • Characteristics of Sn-1.7%Bi-0.7%Cu-0.6%In (hereafter, SBIC) lead-free solder was investigated in this study. The results from SBIC were compared to other lead-free solders such as Sn-3.5%Ag-0.7%Cu (hereafter, SAC), Sn-0.7%Cu (hereafter, SC), and lead-bearing Sn-37%Pb (hereafter, SP) alloy. Tensile properties of bulk solder, wettability, spreading index, bridge and dross were evaluated. As experimental results, tensile strength and elongation of SBIC was 62.5MPa and 21.5%, respectively. The tensile strength was comparable to that of SP solder. The wetting time of SBIC was 1.2 sec at $250^{\circ}C$, and its wetting properties including wetting force were as good as the SAC alloy. However, wettability of the SC was not so good as the SBIC and SAC. The spreading index of SBIC at $250^{\circ}C$ was 71 %, and it was similar level to those of SAC and SC solders. Bridging was not found for all solders of SBIC, SAC and SC in the range from 240 to $260^{\circ}C$. In dross test at $250^{\circ}C$ for an hour, the amount of dross produced from SBIC was about 57% compared to that from SAC.