• Title/Summary/Keyword: CuS thin film

Search Result 322, Processing Time 0.027 seconds

Photo-electronic Properties of Cd(Cu)S/CdS Thin Films and Diodes Prepared by CBD

  • Cho, Doo-Hee;Kim, Kyong-Am;Song, Gi-Bong
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.30-35
    • /
    • 2008
  • In this paper, CdS/Cd(Cu)S thin films and diodes were manufactured via a chemical bath deposition (CBD) process, and the effects of $NH_4Cl$ and TEA(triethylamine) on the properties of the films were examined. The addition of $NH_4Cl$ significantly increased the thickness of the CdS and Cd(Cu)S films, however, the addition of TEA decreased the thickness in both cases slightly. The addition of $NH_4Cl$ along with TEA increased the film thickness more effectively compared to the addition of only $NH_4Cl$. The thickness of the CdS film prepared from an aqueous solution of 0.007 M $CdSO_4$, 1.3 M $NH_4OH$, 0.03 M $SC(NH_2)_2$, 0.0001 M TEA and 0.03 M $NH_4Cl$ was 310 nm. Dark resistivity of the CdS film was $1.2{\times}10^3\;{\Omega}cm$ and the photo resistivity with $500\;W/cm^2$ irradiation of white light was $20{\Omega}cm$. The Cd(Cu)S/CdS thin film diodes prepared by CBD showed good rectifying characteristics.

Effect of the Deposition Time onto Structural Properties of Cu2ZnSnS4 Thin Films Deposited by Pulsed Laser Deposition (펄스 레이저 증착법으로 제작한 Cu2ZnSnS4 박막의 구조 특성 변화에 대한 증착 시간 효과)

  • Byeon, Mirang;Bae, Jong-Seong;Hong, Tae-Eun;Jeong, Euh-Duck;Kim, Shinho;Kim, Yangdo
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • The $Cu_2ZnSnS_4$ (CZTS) thin film solar cell is a candidate next generation thin film solar cell. For the application of an absorption layer in solar cells, CZTS thin films were deposited by pulsed laser deposition (PLD) at substrate temperature of $300^{\circ}C$ without post annealing process. Deposition time was carefully adjusted as the main experimental variable. Regardless of deposition time, single phase CZTS thin films are obtained with no existence of secondary phases. Irregularly-shaped grains are densely formed on the surface of CZTS thin films. With increasing deposition time, the grain size increases and the thickness of the CZTS thin films increases from 0.16 to $1{\mu}m$. The variation of the surface morphology and thickness of the CZTS thin films depends on the deposition time. The stoichiometry of all CZTS thin films shows a Cu-rich and S-poor state. Sn content gradually increases as deposition time increases. Secondary ion mass spectrometry was carried out to evaluate the elemental depth distribution in CZTS thin films. The optimal deposition time to grow CZTS thin films is 150 min. In this study, we show the effect of deposition time on the structural properties of CZTS thin film deposited on soda lime glass (SLG) substrate using PLD. We present a comprehensive evaluation of CZTS thin films.

UV/O3 Process Time Effect on Electrical Characteristics of Sol-gel Processed CuO Thin Film Transistor (UV/O3 조사 시간에 따른 Sol-gel 공정 기반 CuO 박막 트랜지스터의 전기적 특성 변화)

  • Lee, Sojeong;Jang, Bongho;Kim, Taegyun;Lee, Won-Yong;Jang, Jaewon
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In this research, sol-gel processed CuO p-type thin film transistors were fabricated with copper (II) acetate monohydrate precursors. After $500^{\circ}C$ annealing process, the deposited thin films were fully converted into CuO. We investigated $UV/O_3$ process time effect on electrical characteristics of sol-gel processed CuO thin film transistors. After 600 sec $UV/O_3$ process, the fabricated CuO thin film transistor delivered field effect mobility in saturation regime of $5{\times}10^{-3}\;cm^2/V{\cdot}s$ and on/off current ratio of ${\sim}10^2$.

The characteristic of Cu2ZnSnS4 thin film solar cells prepared by sputtering CuSn and CuZn alloy targets

  • Lu, Yilei;Wang, Shurong;Ma, Xun;Xu, Xin;Yang, Shuai;Li, Yaobin;Tang, Zhen
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1571-1576
    • /
    • 2018
  • Recent study shows that the main reason for limiting CZTS device performance lies in the low open circuit voltage, and crucial factor that could affect the $V_{oc}$ is secondary phases like ZnS existing in absorber layer and its interfaces. In this work, the $Cu_2ZnSnS_4$ thin film solar cells were prepared by sputtering CuSn and CuZn alloy targets. Through tuning the Zn/Sn ratios of the CZTS thin films, the crystal structure, morphology, chemical composition and phase purity of CZTS thin films were characterized by X-Ray Diffraction (XRD), scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Raman spectroscopy. The statistics data show that the CZTS solar cell with a ratio of Zn/Sn = 1.2 have the best power convention efficiency of 5.07%. After HCl etching process, the CZTS thin film solar cell with the highest efficiency 5.41% was obtained, which demonstrated that CZTS film solar cells with high efficiency could be developed by sputtering CuSn and CuZn alloy targets.

Fabrication and Characteristics of $CuInS_2$ thin films produced by Vacuum Evaporation (진공증착에 의해 제조된 $CuInS_2$ 박막의 제작 및 특성)

  • Yang, Hyeon-Hun;Jeong, Woon-Jo;Kim, Duck-Tae;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.15-17
    • /
    • 2008
  • $CuInS_2$ thin films were synthesized by sulpurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furance annealing at temperature 200[$^{\circ}C$]. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_2$ thin films with non-stoichiometry composition. $CuInS_2$ thin film was well made at the heat treatment 200[$^{\circ}C$] of SLG/Cu/In/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and hall measurement system. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}[cm^{-3}]$, 312.502[$cm^2/V{\cdot}s$] and $2.36{\times}10^{-2}[{\Omega}{\cdot}cm]$, respectively.

  • PDF

Fabrication and Characteristics of $CuInS_2$ thin films produced by Vacuum Evaporation (진공증착에 의해 제조된 $CuInS_2$ 박막의 제작 및 특성)

  • Yang, Hyeon-Hun;Kim, Young-Jun;So, Soon-Youl;Jeong, Woon-Jo;Park, Gye-Choon;Lee, Jin;Chung, Hae-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.68-70
    • /
    • 2006
  • $CuInS_2$ thin films were synthesized by sulpurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furance annealing at temperature 200[$^{\circ}C$]. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_2$ thin films with non-stoichiometry composition. $CuInS_2$ thin film was well made at the heat treatment 200 [$^{\circ}C$] of SLG/Cu/In/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1:1:2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and hall measurement system. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}[cm^{-3}]$, $312.502[cm^2/V{\cdot}s]$ and $2.36{\times}10^{-2}[{\Omega}{\cdot}cm]$, respectively.

  • PDF

Analysis of the Current-voltage Curves of a Cu(In,Ga)Se2 Thin-film Solar Cell Measured at Different Irradiation Conditions

  • Lee, Kyu-Seok;Chung, Yong-Duck;Park, Nae-Man;Cho, Dae-Hyung;Kim, Kyung-Hyun;Kim, Je-Ha;Kim, Seong-Jun;Kim, Yeong-Ho;Noh, Sam-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.321-325
    • /
    • 2010
  • We analyze the current density - voltage (J - V) curve of a Cu(In,Ga)$Se_2$ (CIGS) thin-film solar cell measured at different irradiation power densities. For the solar-cell sample investigated in this study, the fill factor and power conversion efficiency decreased as the irradiation power density (IPD) increased in the range of 2 to 5 sun. Characteristic parameters of solar cell including the series resistance ($r_s$), the shunt resistance ($r_{sh}$), the photocurrent density ($J_L$), the saturation current density ($J_s$) of an ideal diode, and the coefficient ($C_s$) of the diode current due to electron-hole recombination via ionized traps at the p-n interface are determined from a theoretical fit to the experimental data of the J - V curve using a two-diode model. As IPD increased, both $r_s$ and $r_{sh}$ decreased, but $C_s$ increased.

Aerosol Jet Deposition of $CuInS_2$ Thin Films

  • Fan, Rong;Kong, Seon-Mi;Kim, Dong-Chan;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.159-159
    • /
    • 2011
  • Among the semiconductor ternary compounds in the I-III-$VI_2$ series, $CulnS_2$ ($CulnSe_2$) are one of the promising materials for photovoltaic applications because of the suitability of their electrical and optical properties. The $CuInS_2$ thin film is one of I-III-$VI_2$ type semiconductors, which crystallizes in the chalcopyrite structure. Its direct band gap of 1.5 eV, high absorption coefficient and environmental viewpoint that $CuInS_2$ does not contain any toxic constituents make it suitable for terrestrial photovoltaic applications. A variety of techniques have been applied to deposit $CuInS_2$ thin films, such as single/double source evaporation, coevaporation, rf sputtering, chemical vapor deposition and chemical spray pyrolysis. This is the first report that $CuInS_2$ thin films have been prepared by Aerosol Jet Deposition (AJD) technique which is a novel and attractive method because thin films with high deposition rate can be grown at very low cost. In this study, $CuInS_2$ thin films have been prepared by Aerosol Jet Deposition (AJD) method which employs a nozzle expansion. The mixed fluid is expanded through the nozzle into the chamber evacuated in a lower pressure to deposit $CuInS_2$ films on Mo coated glass substrate. In this AJD system, the characteristics of $CuInS_2$ films are dependent on various deposition parameters, such as compositional ratio of precursor solution, flow rate of carrier gas, stagnation pressure, substrate temperature, nozzle shape, nozzle size and chamber pressure, etc. In this report, $CuInS_2$ thin films are deposited using the deposition parameters such as the compositional ratio of the precursor solution and the substrate temperature. The deposited $CuInS_2$ thin films will be analyzed in terms of deposition rate, crystal structure, and optical properties.

  • PDF

Sputtered Al-Doped ZnO Layers for Cu2ZnSnS4 Thin Film Solar Cells

  • Lee, Kee Doo;Oh, Lee Seul;Seo, Se-Won;Kim, Dong Hwan;Kim, Jin Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.688-688
    • /
    • 2013
  • Al-doped ZnO (AZO) thin films have attracted a lot of attention as a cheap transparent conducting oxide (TCO) material that can replace the expensive Sn-doped In2O3. In particular, AZO thin films are widely used as a window layer of chalcogenide-based thin film solar cells such as Cu(In,Ga)Se2 and Cu2ZnSnS4 (CZTS). Mostly important requirements for the window layer material of the thin film solar cells are the high transparency and the low sheet resistance, because they influence the light absorption by the activelayer and the electron collection from the active layer, respectively. In this study, we prepared the AZO thin films by RF magnetron sputtering using a ZnO/Al2O3 (98:2wt%) ceramic target, and the effect of the sputtering condition such as the working pressure, RF power, and the working distance on the optical, electrical, and crystallographic properties of the AZO thin films was investigated. The AZO thin films with optimized properties were used as a window layer of CZTS thin film solar cells. The CZTS active layers were prepared by the electrochemical deposition and the subsequent sulfurization process, which is also one of the cost-effective synthetic approaches. In addition, the solar cell properties of the CZTS thin film solar cells, such as the photocurrent density-voltage (J-V) characteristics and the external quantum efficiency (EQE) were investigated.

  • PDF

A study on the properties of thin films using a $Cu_2ZnSnS_4$ compound target (화합물 $Cu_2ZnSnS_4$ bulk 타겟을 사용하여 제조한 박막 특성에 관한 연구)

  • Seol, Jae-Seung;Jung, Young-Hee;Nam, Hyo-Duck;Bae, In-Ho;Kim, Kyoo-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.869-873
    • /
    • 2002
  • $Cu_2ZnSnS_4$ (CZTS) thin film is one of the candidate materials for the solar cell. It has an excellent optical absorption coefficient as well as appropriate 1.4~1.5eV band gap. The purpose of this study is replacing a half of high-cost Indium(In) atoms with low-cost Zinc(Zn) atoms and the other half with low-cost Tin(Sn) atoms in the lattice of CIS. In annealing process of thin films deposited with mixture target, the thin films were appeared the peeling. The resistivity was decreased. Thin films were deposited on ITO glass substrates using a compound target which were made by $CU_2S$, ZnS, $SnS_2$ powder were sintered in the atmosphere of Al at room temperature by rf magnetron sputtering We investigated potentialities of a low-cost material for the solar cell by measuring of thin film composition, the structure and optical properties. We could get an appropriate $Cu_2ZnSnS_4$ composition A (112) preferred orientation was appeared without annealing temperature as shown in the diffraction peaks of the CIS cells and was available for photovoltaic thin film materials. The band gap increased from 1.4 to 1.7eV as the composition ratio of Zn/Sn.. The optical absorption coefficient of the thin film was above $10^4cm^{-1}$.

  • PDF