• 제목/요약/키워드: CuO nanoparticle

검색결과 43건 처리시간 0.025초

Numerical Investigation of CuO-Water Nanofluid Flow and Heat Transfer across a Heated Square Cylinder

  • Bouazizi, Lotfi;Turki, Said
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권4호
    • /
    • pp.382-393
    • /
    • 2016
  • Flow over a bluff body is an attractive research field in thermal engineering. In the present study, laminar flow over a confined heated square cylinder using CuO-Water nanofluid is considered. Unsteady two-dimensional Navier-Stokes and energy equations are solved numerically using finite volume method (FVM). Recent correlations for the thermal conductivity and viscosity of nanofluids, which are function of nanoparticle volume fraction, temperature and nanoparticle diameter, have been employed. The results of numerical solution are obtained for Richardson number, nanoparticle volume fractions and nanoparticle diameters ranges of 0-1, 1-5% and 30-100 nm respectively for a fixed Reynolds number of Re = 150. At a given volume concentration, the investigations reveal that the decreasing in size of nanoparticles produces an increase in heat transfer rates from the square cylinder and a decrease in amplitude of the lift coefficient. Also, the increment of Nusselt number is more pronounced at higher concentrations and higher Richardson numbers.

Nanocrystalline Copper Oxide(II)-Catalyzed Alkyne-Azide Cycloadditions

  • Song, Young-Jin;Yoo, Chung-Yul;Hong, Jong-Tai;Kim, Seung-Joo;Son, Seung-Uk;Jang, Hye-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권8호
    • /
    • pp.1561-1564
    • /
    • 2008
  • Although the use of Cu(II) salts as catalysts without reductants is limited in the cycloaddition of acetylenes with azides, the catalytic system employing average 10 nm CuO(II) nanoparticles in the absence of reductants shows good catalytic activity to form 1,4-disubstituted 1,2,3-triazoles even in wet THF as well as water. It is also noticeable that CuO(II) nanoparticle catalysts can be recycled with consistent activity. A range of alkynes and azides were subject to the optimized CuO(II) nanoparticle-catalyzed cycloaddition reaction conditions to afford the desired products in good yields.

Observation of Electrocatalytic Amplification of Iridium Oxide (IrOx) Single Nanoparticle Collision on Copper Ultramicroelectrodes

  • Choi, Yong Soo;Jung, Seung Yeon;Joo, Jin Woo;Kwon, Seong Jung
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2519-2522
    • /
    • 2014
  • Recently, the observation of the electrocatalytic behavior of individual nanoparticles (NPs) by electrochemical amplification method has been reported. For example, the Iridium oxide ($IrO_x$) NP collision on the Pt UME was observed via electrocatalytic water oxidation. However, the bare Pt UME had poor reproducibility for the observation of NP collision signal and required an inconvenient surface pre-treatment for the usage. In this manuscript, we has been investigated other metal electrode such as Cu UME for the reproducible data analysis and convenient use. The $IrO_x$ NP collision was successively observed on the bare Cu UME and the reproducibility in collision frequency was improved comparing with previous case using the $NaBH_4$ pre-treated Pt UME. Also, the adhesion coefficient between NP and the Cu UME was studied for better understanding of the single NP collision system.

헵틸알콜 기반의 Cu계 나노입자 합성에서 온도 및 올레일아민 첨가량의 효과 (Effects of Synthetic Temperature and Amount of Oleylamine in Synthesis of Cu-Based Nanoparticles Using Heptyl Alcohol Solvent)

  • 지상수;이종현
    • 마이크로전자및패키징학회지
    • /
    • 제21권3호
    • /
    • pp.57-62
    • /
    • 2014
  • 헵틸알콜 기반의 화학적 합성법으로 나노급 Cu 입자의 제조를 실시해 보았으며, 합성 공정의 주요 공정변수인 합성 온도 및 올레일아민의 첨가량에 따른 생성 나노입자의 종류 및 형상 변화에 대해 논의하였다. 합성 온도 및 올레 일아민 첨가량에 따라 생성 나노 입자의 종류 및 형상은 크게 변화하였다. $160^{\circ}C$의 합성 온도 조건에서는 불완전한 환원반응의 영향으로 올레일아민 첨가량에 관계없이 육면체 형태의 $Cu_2O$ 상만이 합성되었고, 올레일아민 첨가량이 증가할수록 $Cu_2O$ 입자들의 평균 크기는 감소하였다. 그러나 $170^{\circ}C$의 온도에서 합성을 실시한 경우에서는 불규칙한 구형 및 땅콩형 나노 입자들이 관찰되었다. 또한 올레일아민 첨가량이 증가할수록 입자들의 평균 크기는 지속적으로 서서히 감소하는 경향을 나타내었으며, 이때 생성 물질도 $Cu_2O$인 경우서부터 순수 Cu 상태로 변화되면서 합성되는 결과가 관찰되었다.

은이 코팅된 Copper(I) Oxide 나노 입자 및 도전성 페이스트의 제조 특성 (Fabrication and Characterization of Silver Copper(I) Oxide Nanoparticles for a Conductive Paste)

  • 박승우;손재홍;심상보;최연빈;배동식
    • 한국재료학회지
    • /
    • 제29권1호
    • /
    • pp.37-42
    • /
    • 2019
  • This study investigates Ag coated $Cu_2O$ nanoparticles that are produced with a changing molar ratio of Ag and $Cu_2O$. The results of XRD analysis reveal that each nanoparticle has a diffraction pattern peculiar to Ag and $Cu_2O$ determination, and SEM image analysis confirms that Ag is partially coated on the surface of $Cu_2O$ nanoparticles. The conductive paste with Ag coated $Cu_2O$ nanoparticles approaches the specific resistance of $6.4{\Omega}{\cdot}cm$ for silver paste(SP) as $(Ag)/(Cu_2O)$ the molar ratio increases. The paste(containing 70 % content and average a 100 nm particle size for the silver nanoparticles) for commercial use for mounting with a fine line width of $100{\mu}m$ or less has a surface resistance of 5 to $20{\mu}{\Omega}{\cdot}cm$, while in this research an Ag coated $Cu_2O$ paste has a larger surface resistance, which is disadvantageous. Its performance deteriorates as a material required for application of a fine line width electrode for a touch panel. A touch panel module that utilizes a nano imprinting technique of $10{\mu}m$ or less is expected to be used as an electrode material for electric and electronic parts where large precision(mounting with fine line width) is not required.

Characteristics of photo-thermal reduced Cu film using photographic flash light

  • Kim, Minha;Kim, Donguk;Hwang, Soohyun;Lee, Jaehyeong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.293.1-293.1
    • /
    • 2016
  • Various materials including conductive, dielectric, and semi-conductive materials, constitute suitable candidates for printed electronics. Metal nanoparticles (e.g. Ag, Cu, Ni, Au) are typically used in conductive ink. However, easily oxidized metals, such as Cu, must be processed at low temperatures and as such, photonic sintering has gained significant attention as a new low-temperature processing method. This method is based on the principle of selective heating of a strongly absorbent film, without light-source-induced damage to the transparent substrate. However, Cu nanoparticles used in inks are susceptible to the growth of a native copper-oxide layer on their surface. Copper-oxide-nanoparticle ink subjected to a reduction mechanism has therefore been introduced in an attempt to achieve long-term stability and reliability. In this work, a flash-light sintering process was used for the reduction of an inkjet-printed Cu(II)O thin film to a Cu film. Using a photographic lighting instrument, the intensity of the light (or intense pulse light) was controlled by the charged power (Ws). The resulting changes in the structure, as well as the optical and electrical properties of the light-irradiated Cu(II)O films, were investigated. A Cu thin film was obtained from Cu(II)O via photo-thermal reduction at 2500 Ws. More importantly, at one shot of 3000 Ws, a low sheet resistance value ($0.2527{\Omega}/sq.$) and a high resistivity (${\sim}5.05-6.32{\times}10^{-8}{\Omega}m$), which was ~3.0-3.8 times that of bulk Cu was achieved for the ~200-250-nm-thick film.

  • PDF

CuO/Au@MWCNTs 나노복합재 기반 전기화학적 포도당 바이오센서의 민감도 개선 (Improvement in Sensitivity of Electrochemical Glucose Biosensor Based on CuO/Au@MWCNTs Nanocomposites)

  • 박미선;배태성;이영석
    • 공업화학
    • /
    • 제27권2호
    • /
    • pp.145-152
    • /
    • 2016
  • 본 연구에서는 전기화학적 바이오센서의 포도당 감지능을 높이고자 금 나노 입자가 분산된 다중벽탄소나노튜브(multi-walled carbon nanotube, MWCNTs)에 CuO를 도입하였다. 금 나노 입자로 인하여 나노 클러스터(cluster) 형상을 갖는 CuO가 합성되었으며, 이는 포도당 감지능력에 매우 큰 영향을 나타내었다. 0.1 mole의 CuO가 합성되었을 때 CuO/Au@MWCNTs 나노복합재를 전극재료로서 바이오센서는 $504.1{\mu}A\;mM^{-1}cm^{-2}$으로 가장 높은 민감도를 보여주었으며, 이 값은 MWCNTs만을 전극으로 이용할 때보다 약 4배 정도 컸다. 또한, 0-10 mM의 긴 선형 구간(linear range)과 0.008 mM의 낮은 LoD (limit of detection) 값을 보여주었다. 이러한 실험 결과들은 CuO/Au@MWCNTs 나노복합재가 CuO를 이용한 다른 전기화학적 바이오센서보다 우수하다는 것을 입증하였으며, 이는 나노 클러스터 형상의 CuO가 포도당 감지에서 전기화학적 반응에 유리하기 때문으로 사료된다.

산화구리 나노입자를 혼합한 PEDOT:PSS 박막을 이용한 유기 태양전지 (Organic Solar Cells with CuO Nanoparticles Mixed PEDOT:PSS Buffer Layer)

  • 오상훈;허승진;김현재
    • 한국전기전자재료학회논문지
    • /
    • 제27권2호
    • /
    • pp.121-125
    • /
    • 2014
  • In this research, nanocomposite layers consisting of poly (3,4,-ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) and CuO nanoparticles were investigated as hole transport layers in organic solar cells based on poly (3-hexylthiophene) (P3HT) as the electron donor and (6.6) phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor. The addition of CuO nanoparticles to PEDOT:PSS layer improved the solar cell performance with 0.5% CuO nanoparticle concentration. At optimized concentration, CuO mixed PEDOT:PSS films had good electrical ($4.131{\Omega}{\cdot}cm$) and optical (transmittance > 90%) properties for using hole transporting layer. We investigated that improved solar cell performance with CuO nanoparticles mixed PEDOT:PSS films.