DOI QR코드

DOI QR Code

Effects of Synthetic Temperature and Amount of Oleylamine in Synthesis of Cu-Based Nanoparticles Using Heptyl Alcohol Solvent

헵틸알콜 기반의 Cu계 나노입자 합성에서 온도 및 올레일아민 첨가량의 효과

  • Chee, Sang-Soo (Department of Materials Science & Engineering, Seoul National University of Science and Technology) ;
  • Lee, Jong-Hyun (Department of Materials Science & Engineering, Seoul National University of Science and Technology)
  • 지상수 (서울과학기술대학교 신소재공학과) ;
  • 이종현 (서울과학기술대학교 신소재공학과)
  • Received : 2014.09.18
  • Accepted : 2014.09.29
  • Published : 2014.09.30

Abstract

With synthesis temperature and adding amount of oleylamine, nanometer-sized Cu particles were fabricated by heptyl alcohol-based chemical synthesis. The synthetic temperature and amount of oleylamine changed excessively the shape and phase of synthesized nanoparticles. Only cubic-shaped $Cu_2O$ phase was formed at $160^{\circ}C$ regardless of the amount of oleylamine because of imperfect reduction reaction, representing results that the average size of $Cu_2O$ particles decreased with increasing the amount of oleylamine. In the case the synthesis at $170^{\circ}C$, however, nanoparticles of irregular sphere or peanut shapes were synthesized. Moreover, the average size of nanoparticles decreased continuously and gradually with an increase of the amount of oleylamine. According to the size decrease, the synthesized $Cu_2O$ nanoparticles were also transformed into pure Cu nanoparticles.

헵틸알콜 기반의 화학적 합성법으로 나노급 Cu 입자의 제조를 실시해 보았으며, 합성 공정의 주요 공정변수인 합성 온도 및 올레일아민의 첨가량에 따른 생성 나노입자의 종류 및 형상 변화에 대해 논의하였다. 합성 온도 및 올레 일아민 첨가량에 따라 생성 나노 입자의 종류 및 형상은 크게 변화하였다. $160^{\circ}C$의 합성 온도 조건에서는 불완전한 환원반응의 영향으로 올레일아민 첨가량에 관계없이 육면체 형태의 $Cu_2O$ 상만이 합성되었고, 올레일아민 첨가량이 증가할수록 $Cu_2O$ 입자들의 평균 크기는 감소하였다. 그러나 $170^{\circ}C$의 온도에서 합성을 실시한 경우에서는 불규칙한 구형 및 땅콩형 나노 입자들이 관찰되었다. 또한 올레일아민 첨가량이 증가할수록 입자들의 평균 크기는 지속적으로 서서히 감소하는 경향을 나타내었으며, 이때 생성 물질도 $Cu_2O$인 경우서부터 순수 Cu 상태로 변화되면서 합성되는 결과가 관찰되었다.

Keywords

References

  1. N. Cabrera and N. F. Mott, "Theory of the Oxidation of Metals", Rep. Prog. Phys., 12, 164 (1949).
  2. X. Xu, X. Luo, H. Zhuang, W. Li and B. Zhang, "Electroless Silver Coating on Fine Copper Powder and Its Effects on Oxidation Resistance", Mater. Lett., 57, 3987 (2003). https://doi.org/10.1016/S0167-577X(03)00252-0
  3. Y. M. Shin, S. -S. Chee and J. -H. Lee, "Trends on Synthesis of Cu Nanoparticles by a Wet Reduction Method", J. Microelectron. Packag. Soc., 20(3), 11 (2013). https://doi.org/10.6117/kmeps.2013.20.2.011
  4. A. Muzikansky, P. Nanikashvili, J. Grinblat and D. Zitoun, "Ag Dewetting in Cu@ Ag Monodisperse Core-Shell Nanoparticles", J. Phys. Chem. C, 117, 3093 (2013).
  5. J. W. Kim, Y. H. Cho and J. -H. Lee, "Fabrication of a Ultrathin Ag Film on a Thin Cu Film by Low-Temperature Immersion Plating in an Grycol-Based Solution", J. Microelectron. Packag. Soc., 21(2), 79 (2014). https://doi.org/10.6117/kmeps.2014.21.2.079
  6. S.-S. Chee and J.-H. Lee, 'Preparation and Oxidation Behav- ior of Ag-Coated Cu Nanoparticles Less Than 20 nm in Size", J. Mater. Chem. C, 2, 5372 (2014). https://doi.org/10.1039/c4tc00509k
  7. H. T. Hai, J. G. Ahn, D. J. Kim, J. R. Lee, H. S. Chung and C. O. Kim, "Developing Process for Coating Copper Particles with Silver by Electroless Plating Method", Sur. Coat. Technol., 201, 3788 (2006). https://doi.org/10.1016/j.surfcoat.2006.03.025
  8. M. Tsuji, S. Hikino, Y. Sano and M. Horigome, "Preparation of Cu@Ag core-Shell Nanoparticles Using a Two-Step Polyol Process under Bubbling of N2 Gas", Chem. Lett., 38(6) 518 (2009).
  9. R. Zhang, W. Lin, K. Lawrence and C. P. Wong, "Highly Reliable, Low Cost, Isotropically Conductive Adhesives Filled with Ag-Coated Cu Flakes for Electronic Packaging Applications", Int. J. Adhes. Adhes., 30, 403 (2010). https://doi.org/10.1016/j.ijadhadh.2010.01.004
  10. J. Zhao, D.M. Zhang and J. Zhao, "Fabrication of Cu-Ag Core-Shell Bimetallic Superfine Powders by Eco-Friendly Reagents and Structures Characterization", J. Solid State Chem., 184, 2339 (2011). https://doi.org/10.1016/j.jssc.2011.06.032
  11. X. G. Cao and H. Y. Zhang, "Fabrication and Performance of Silver Coated Copper Powder", Electron. Matter. Lett., 8(4), 467 (2012). https://doi.org/10.1007/s13391-012-1110-6
  12. Y. Peng, C. Yang, K. Chen, S. R. Popuri, C. -H. Lee and B. -S. Tang, "Study on Synthesis of Ultrafine Cu-Ag Core-Shell Powders with High Electal Conductivity", Appl. Sur. Sci., 263, 38 (2012). https://doi.org/10.1016/j.apsusc.2012.08.066
  13. J. Ryu, H.-S. Kim and H. Thomas Hahn, "Reactive Sintering of Copper Nanoparticles Using Intense Pulsed Light for Printed Electronic", J. Elecron. Mater., 40(1), 42 (2010).
  14. S. -J. Joo, H. -J. Hwang and H. -S. Kim, "Highly Conductive Copper Nano/Microparticles Ink via Flash Light Sintering for Printed Electronics", Nanotechnology, 25, 265601 (2014). https://doi.org/10.1088/0957-4484/25/26/265601
  15. C. Kumar, Metallic Nanomaterials, Vol.1, pp.3-70, Wiley- VCH, Weinheim (2008).
  16. Y. D. Mott, J. Galkowski, L. Wang, J. Luo and C.-J. Zhong, "Synthesis of Size-Controlled and Shaped Copper Nanoparticles", Langmuir, 23, 5740 (2007). https://doi.org/10.1021/la0635092

Cited by

  1. Trimethylsilyl Chloride를 Silylation Agent로 사용한 Ba0.6Sr0.4TiO3 나노입자의 표면개질 연구 vol.26, pp.4, 2014, https://doi.org/10.6117/kmeps.2019.26.4.127