References
- Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004 https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
- Kolb, H. C.; Sharpless, K. B. Drug Discov. Today 2003, 8, 1128 https://doi.org/10.1016/S1359-6446(03)02933-7
- Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2006, 51
- Sharpless, K. B.; Fokin, V. V.; Green, L. G.; Rostovtsev, V. V. Angew. Chem. Int. Ed. 2002, 41, 2596 https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
- Meldal, M.; Christensen, C.; Tornoe, C. W. J. Org. Chem. 2002, 67, 3057 https://doi.org/10.1021/jo011148j
- Yan, Z.-Y.; Zhao, Y.-B.; Fan, M.-J.; Liu, W.-M.; Liang, Y.-M. Tetrahedron 2005, 61, 9331 https://doi.org/10.1016/j.tet.2005.07.060
- Buckle, D. R.; Rockell, C. J. M. J. Chem. Soc. Perkin Trans. I 1982, 627
- Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; De Clereq, E.; Perno, C.-F.; Karlsson, A.; Balzarini, J.; Carmarasa, M. J. J. Med. Chem. 1994, 37, 4185 https://doi.org/10.1021/jm00050a015
- Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G. J. Am. Chem. Soc. 2003, 125, 3192 https://doi.org/10.1021/ja021381e
- Speers, A. E.; Adam, G. C.; Cravatt, B. F. J. Am. Chem. Soc. 2003, 125, 4686 https://doi.org/10.1021/ja034490h
- Lee, L. V.; Mitchell, M. L.; Huang, S.-J.; Fokin, V. V.; Sharpless, K. B.; Wong, C.-H. J. Am. Chem. Soc. 2003, 125, 9588 https://doi.org/10.1021/ja0302836
- Link, A. J.; Vink, M. K. S.; Tirrell, D. A. J. Am. Chem. Soc. 2004, 126, 10598 https://doi.org/10.1021/ja047629c
- Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2853 https://doi.org/10.1021/ol0493094
- Pérez-Balderas, F.; Ortega-Munoz, M.; Morales-Sanfrutos, J.; Hernández-Mateo, F.; Calvo-Flores, F. G.; Calvo-Asín, J. A.; Isac- García, J.; Santoyo-Gonzalez, F. Org. Lett. 2003, 5, 1951 https://doi.org/10.1021/ol034534r
- Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2004, 126, 210
- Lewis, W. G.; Magallon, F. G.; Fokin, V. V.; Finn, M. G. J. Am. Chem. Soc. 2004, 126, 9152 https://doi.org/10.1021/ja048425z
- Lutz, J.-F.; Börner, H. G.; Weichenhan, K. Macromol. Rapid Commun. 2005, 26, 514 https://doi.org/10.1002/marc.200500002
- Gerard, B.; Ryan, J.; Beeler, A. B.; Porco Jr., J. A. Tetrahederon 2006, 62, 6405 https://doi.org/10.1016/j.tet.2006.04.025
- Díez-González, S.; Correa, A.; Cavallo, L.; Nolan, S. P. Chem. Eur. J. 2006, 7558
- Nolte, C.; Mayer, P.; Straub, B. F. Angew. Chem. Int. Ed. 2007, 46, 2101 https://doi.org/10.1002/anie.200604444
- Pachón, L. D.; van Maarseveen, J. H.; Rothenberg, G. Adv. Synth. Catal. 2005, 347, 811 https://doi.org/10.1002/adsc.200404383
- Orgueira, H. A.; Fokas, D.; Isome, Y.; Chan, P. C.-M.; Baldino, C. M. Tetrahedron Lett. 2005, 46, 2911 https://doi.org/10.1016/j.tetlet.2005.02.127
- Molteni, G.; Bianchi, C. L.; Marinoni, G.; Santo, N.; Ponti, A. New J. Chem. 2006, 30, 1137 https://doi.org/10.1039/b604297j
- Lipshutz, B. H.; Taft, B. R. Angew. Chem. Int. Ed. 2006, 45, 8235 https://doi.org/10.1002/anie.200603726
- Girard, C.; Önen, E.; Aufort, M.; Beauvière, S.; Samson, E.; Herscovici, J. Org. Lett. 2006, 8, 1689 https://doi.org/10.1021/ol060283l
- Kantam, M. L.; Jaya, V. S.; Sreedhar, B.; Rao, M. N.; Choudary, B. M. J. Mol. Catalysis A: Chemical 2006, 256, 273
- Chassaing, S.; Kumarraja, M.; Sido, A. S. S.; Pale, P.; Sommer, J. Org. Lett. 2007, 9, 883 https://doi.org/10.1021/ol0631152
- Ye, M.-C.; Zhou, J.; Huang, Z.-Z.; Tang, Y. Chem. Commun. 2003, 2554
- Park, S. B.; Alper, H. Chem. Commun. 2005, 1315
- Reddy, K. R.; Rajgopal, K.; Kantam, M. L. Synlett 2006, 957
- Gladysz, J. A. Pure Appl. Chem. 2001, 73, 1319 https://doi.org/10.1351/pac200173081319
- Gladysz, J. A. Chem. Rev. 2002, 102, 3215 https://doi.org/10.1021/cr020068s
- Bell, A. T. Science 2003, 299, 1688 https://doi.org/10.1126/science.1083671
- Schlögl, R.; Hamid, S. B. A. Angew. Chem. Int. Ed. 2004, 43, 1628 https://doi.org/10.1002/anie.200301684
- Haruta, M. CATTECH 2002, 6, 102 https://doi.org/10.1023/A:1020181423055
- Choudary, B. M.; Mulukutla, R. S.; Klabunde, K. J. J. Am. Chem. Soc. 2003, 125, 2020 https://doi.org/10.1021/ja0211757
- Sarvari, M. H.; Sharghi, H. J. Org. Chem. 2004, 69, 6953 https://doi.org/10.1021/jo0494477
- Choudary, B. M.; Kantam, M. L.; Ranganath, K. V. S.; Mahender, K.; Sreedhar, B. J. Am. Chem. Soc. 2004, 126, 3396 https://doi.org/10.1021/ja038954n
- Choudary, B. M.; Ranganath, K. V. S.; Pal, U.; Kantam, M. L.; Sreehar, B. J. Am. Chem. Soc. 2005, 127, 13167 https://doi.org/10.1021/ja0440248
- Choudary, B. M.; Mahendar, K.; Kantam, M. L.; Ranganath, K. V. S.; Athar, T. Adv. Synth. Catal. 2006, 348, 1977 https://doi.org/10.1002/adsc.200606001
- Guerreiro, E. D.; Gorriz, O. F.; Rivarola, J. B.; Arrua, L. A. Appl. Catal. A 1997, 165, 259 https://doi.org/10.1016/S0926-860X(97)00207-X
- Carniti, P.; Gervasini, A.; Modica, V. H.; Ravsio, N. Appl. Catal. B 2000, 28, 175 https://doi.org/10.1016/S0926-3373(00)00172-7
- Koryabkina, N. A.; Phatak, A. A.; Ruettinger, W. F.; Farrauto, R. J.; Ribeiro, F. H. J. Catal. 2003, 217, 233
- Martinez-Arias, A.; Hungria, A. B.; Fernandez-Garcia, M.; Conesa, J. C.; Munuera, G. J. Phys. Chem. B 2004, 108, 17983 https://doi.org/10.1021/jp0465837
- Bennici, S.; Auroux, A.; Guimon, C.; Gervasini, A. Chem. Mater. 2006, 18, 3641 https://doi.org/10.1021/cm060241r
- Gervasini, A.; Carniti, P.; Bennici, S.; Messi, C. Chem. Mater. 2007, 19, 1319 https://doi.org/10.1021/cm062503v
- Rout, L.; Sen, T. K.; Punniyamurthy, T. Angew. Chem. Int. Ed. 2007, 46, 1 https://doi.org/10.1002/anie.200690172
- Kantam, M. L.; Laha, S.; Yadav, J.; Likhar, P. R.; Sreedhar, B.; Choudary, B. M. Adv. Synth. Catal. 2007, 349, 1797 https://doi.org/10.1002/adsc.200600481
- Rout, L.; Jammi, S.; Punniyamurthy, T. Org. Lett. 2007, 9, 3397 https://doi.org/10.1021/ol0713887
- Zhu, J.; Li, D.; Chen, H.; Yang, X.; Lu, L.; Wang, X. Materials Lett. 2004, 58, 3324 https://doi.org/10.1016/j.matlet.2004.06.031
- JCPDS-International Centre for Diffraction Data PCPDFWIN, V. 2.4; 2003
- L'abbé, G. Chem. Rev. 1969, 69, 345 https://doi.org/10.1021/cr60259a004
- Kulkarni, A. A.; Maki, K. Org. Synth. 2006, 83, 200 https://doi.org/10.15227/orgsyn.083.0200
- Müller, P.; Imogaï, H. Tetrahedron: Asymmetry 1998, 9, 4419 https://doi.org/10.1016/S0957-4166(98)00469-8
- Hooper, N.; Beeching, L. J.; Dyke, J. M.; Morris, A.; Ogden, J. S.; Dias, A. A.; Costa, M. L.; Barros, M. T.; Cabral, M. H.; Moutinho, A. M. C. J. Phys. Chem. A 2002, 106, 9968 https://doi.org/10.1021/jp020625e
- Appukkuttan, P.; Dehaen, W.; Fokin, V. V.; Van der Eycken, E. Org. Lett. 2004, 6, 4223 https://doi.org/10.1021/ol048341v
- Beckmann, H. S. G.; Wittmann, V. Org. Lett. 2007, 9, 1 https://doi.org/10.1021/ol0621506
Cited by
- Experimental Investigation on the Mechanism of Chelation-Assisted, Copper(II) Acetate-Accelerated Azide–Alkyne Cycloaddition vol.133, pp.35, 2011, https://doi.org/10.1021/ja203733q
- Copper Based Nanoparticles-Catalyzed Organic Transformations vol.17, pp.3-4, 2013, https://doi.org/10.1007/s10563-013-9159-2
- CuI nanoparticles: a highly active and easily recyclable catalyst for the synthesis of 2-amino-3,5-dicyano-6-sulfanyl pyridines vol.34, pp.3, 2013, https://doi.org/10.1080/17415993.2012.728220
- Copper(0) Nanoparticles in Click Chemistry: Synthesis of 3,5-Disubstituted Isoxazoles vol.52, pp.6, 2015, https://doi.org/10.1002/jhet.2065
- A copper acetate/2-aminobenzenthiol complex supported on magnetite/silica nanoparticles as a highly active and recyclable catalyst for 1,2,3-triazole synthesis vol.5, pp.130, 2015, https://doi.org/10.1039/C5RA22909J
- Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis vol.116, pp.6, 2016, https://doi.org/10.1021/acs.chemrev.5b00482
- Green Catalytic Process for Click Synthesis Promoted by Copper Oxide Nanocomposite Supported on Graphene Oxide vol.358, pp.7, 2016, https://doi.org/10.1002/adsc.201501072
- When CuAAC 'Click Chemistry' goes heterogeneous vol.6, pp.4, 2016, https://doi.org/10.1039/C5CY01847A
- Copper(II) Acetylacetonate: An Efficient Catalyst for Huisgen-Click Reaction for Synthesis of 1,2,3-Triazoles in Water vol.35, pp.8, 2017, https://doi.org/10.1002/cjoc.201700007
- Automated Synthesis of a 96 Product-Sized Library of Triazole Derivatives Using a Solid Phase Supported Copper Catalyst vol.15, pp.5, 2010, https://doi.org/10.3390/molecules15053087
- ChemInform Abstract: Nanocrystalline Copper Oxide(II)-Catalyzed Alkyne-Azide Cycloadditions. vol.40, pp.1, 2009, https://doi.org/10.1002/chin.200901135
- Cu2O Nanocubes Catalyzed Difunctionalization Reaction of Vinyl Arenes with Cyclic Ethers vol.31, pp.12, 2008, https://doi.org/10.5012/bkcs.2010.31.12.3509
- Monosaccharide as a Central Scaffold Toward the Construction of Salicylate-Based Bidentate PTP1B Inhibitors via Click Chemistry vol.32, pp.3, 2008, https://doi.org/10.5012/bkcs.2011.32.3.1000
- Molecular-Scale Investigation of Reconstructed Copper Surface Induced by Dissociative Adsorption of O2 vol.32, pp.4, 2008, https://doi.org/10.5012/bkcs.2011.32.4.1129
- Magnetic Isinglass a Nano‐Bio Support for Copper Immobilization: Cu-IG@Fe3O4a Heterogeneous Catalyst for Triazoles Synthesis vol.3, pp.19, 2008, https://doi.org/10.1002/slct.201800501
- Catalytic performance of Cu(II)-supported graphene quantum dots modified NiFe2O4 as a proficient nano-catalyst in the synthesis of 1,2,3-triazoles vol.151, pp.7, 2008, https://doi.org/10.1007/s00706-020-02652-z
- CLICK-17, a DNA enzyme that harnesses ultra-low concentrations of either Cu + or Cu 2+ to catalyze the azide-alkyne ‘click’ reaction in water vol.48, pp.13, 2008, https://doi.org/10.1093/nar/gkaa502
- Graphene Oxide Functionalized Zn(II) Salen Complex: An Efficient and New Route for the Synthesis of 1,2,3‐Triazole Derivatives vol.5, pp.33, 2008, https://doi.org/10.1002/slct.202002708