DOI QR코드

DOI QR Code

Nanocrystalline Copper Oxide(II)-Catalyzed Alkyne-Azide Cycloadditions

  • Published : 2008.08.20

Abstract

Although the use of Cu(II) salts as catalysts without reductants is limited in the cycloaddition of acetylenes with azides, the catalytic system employing average 10 nm CuO(II) nanoparticles in the absence of reductants shows good catalytic activity to form 1,4-disubstituted 1,2,3-triazoles even in wet THF as well as water. It is also noticeable that CuO(II) nanoparticle catalysts can be recycled with consistent activity. A range of alkynes and azides were subject to the optimized CuO(II) nanoparticle-catalyzed cycloaddition reaction conditions to afford the desired products in good yields.

Keywords

References

  1. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004 https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
  2. Kolb, H. C.; Sharpless, K. B. Drug Discov. Today 2003, 8, 1128 https://doi.org/10.1016/S1359-6446(03)02933-7
  3. Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2006, 51
  4. Sharpless, K. B.; Fokin, V. V.; Green, L. G.; Rostovtsev, V. V. Angew. Chem. Int. Ed. 2002, 41, 2596 https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
  5. Meldal, M.; Christensen, C.; Tornoe, C. W. J. Org. Chem. 2002, 67, 3057 https://doi.org/10.1021/jo011148j
  6. Yan, Z.-Y.; Zhao, Y.-B.; Fan, M.-J.; Liu, W.-M.; Liang, Y.-M. Tetrahedron 2005, 61, 9331 https://doi.org/10.1016/j.tet.2005.07.060
  7. Buckle, D. R.; Rockell, C. J. M. J. Chem. Soc. Perkin Trans. I 1982, 627
  8. Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; De Clereq, E.; Perno, C.-F.; Karlsson, A.; Balzarini, J.; Carmarasa, M. J. J. Med. Chem. 1994, 37, 4185 https://doi.org/10.1021/jm00050a015
  9. Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G. J. Am. Chem. Soc. 2003, 125, 3192 https://doi.org/10.1021/ja021381e
  10. Speers, A. E.; Adam, G. C.; Cravatt, B. F. J. Am. Chem. Soc. 2003, 125, 4686 https://doi.org/10.1021/ja034490h
  11. Lee, L. V.; Mitchell, M. L.; Huang, S.-J.; Fokin, V. V.; Sharpless, K. B.; Wong, C.-H. J. Am. Chem. Soc. 2003, 125, 9588 https://doi.org/10.1021/ja0302836
  12. Link, A. J.; Vink, M. K. S.; Tirrell, D. A. J. Am. Chem. Soc. 2004, 126, 10598 https://doi.org/10.1021/ja047629c
  13. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2853 https://doi.org/10.1021/ol0493094
  14. Pérez-Balderas, F.; Ortega-Munoz, M.; Morales-Sanfrutos, J.; Hernández-Mateo, F.; Calvo-Flores, F. G.; Calvo-Asín, J. A.; Isac- García, J.; Santoyo-Gonzalez, F. Org. Lett. 2003, 5, 1951 https://doi.org/10.1021/ol034534r
  15. Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2004, 126, 210
  16. Lewis, W. G.; Magallon, F. G.; Fokin, V. V.; Finn, M. G. J. Am. Chem. Soc. 2004, 126, 9152 https://doi.org/10.1021/ja048425z
  17. Lutz, J.-F.; Börner, H. G.; Weichenhan, K. Macromol. Rapid Commun. 2005, 26, 514 https://doi.org/10.1002/marc.200500002
  18. Gerard, B.; Ryan, J.; Beeler, A. B.; Porco Jr., J. A. Tetrahederon 2006, 62, 6405 https://doi.org/10.1016/j.tet.2006.04.025
  19. Díez-González, S.; Correa, A.; Cavallo, L.; Nolan, S. P. Chem. Eur. J. 2006, 7558
  20. Nolte, C.; Mayer, P.; Straub, B. F. Angew. Chem. Int. Ed. 2007, 46, 2101 https://doi.org/10.1002/anie.200604444
  21. Pachón, L. D.; van Maarseveen, J. H.; Rothenberg, G. Adv. Synth. Catal. 2005, 347, 811 https://doi.org/10.1002/adsc.200404383
  22. Orgueira, H. A.; Fokas, D.; Isome, Y.; Chan, P. C.-M.; Baldino, C. M. Tetrahedron Lett. 2005, 46, 2911 https://doi.org/10.1016/j.tetlet.2005.02.127
  23. Molteni, G.; Bianchi, C. L.; Marinoni, G.; Santo, N.; Ponti, A. New J. Chem. 2006, 30, 1137 https://doi.org/10.1039/b604297j
  24. Lipshutz, B. H.; Taft, B. R. Angew. Chem. Int. Ed. 2006, 45, 8235 https://doi.org/10.1002/anie.200603726
  25. Girard, C.; Önen, E.; Aufort, M.; Beauvière, S.; Samson, E.; Herscovici, J. Org. Lett. 2006, 8, 1689 https://doi.org/10.1021/ol060283l
  26. Kantam, M. L.; Jaya, V. S.; Sreedhar, B.; Rao, M. N.; Choudary, B. M. J. Mol. Catalysis A: Chemical 2006, 256, 273
  27. Chassaing, S.; Kumarraja, M.; Sido, A. S. S.; Pale, P.; Sommer, J. Org. Lett. 2007, 9, 883 https://doi.org/10.1021/ol0631152
  28. Ye, M.-C.; Zhou, J.; Huang, Z.-Z.; Tang, Y. Chem. Commun. 2003, 2554
  29. Park, S. B.; Alper, H. Chem. Commun. 2005, 1315
  30. Reddy, K. R.; Rajgopal, K.; Kantam, M. L. Synlett 2006, 957
  31. Gladysz, J. A. Pure Appl. Chem. 2001, 73, 1319 https://doi.org/10.1351/pac200173081319
  32. Gladysz, J. A. Chem. Rev. 2002, 102, 3215 https://doi.org/10.1021/cr020068s
  33. Bell, A. T. Science 2003, 299, 1688 https://doi.org/10.1126/science.1083671
  34. Schlögl, R.; Hamid, S. B. A. Angew. Chem. Int. Ed. 2004, 43, 1628 https://doi.org/10.1002/anie.200301684
  35. Haruta, M. CATTECH 2002, 6, 102 https://doi.org/10.1023/A:1020181423055
  36. Choudary, B. M.; Mulukutla, R. S.; Klabunde, K. J. J. Am. Chem. Soc. 2003, 125, 2020 https://doi.org/10.1021/ja0211757
  37. Sarvari, M. H.; Sharghi, H. J. Org. Chem. 2004, 69, 6953 https://doi.org/10.1021/jo0494477
  38. Choudary, B. M.; Kantam, M. L.; Ranganath, K. V. S.; Mahender, K.; Sreedhar, B. J. Am. Chem. Soc. 2004, 126, 3396 https://doi.org/10.1021/ja038954n
  39. Choudary, B. M.; Ranganath, K. V. S.; Pal, U.; Kantam, M. L.; Sreehar, B. J. Am. Chem. Soc. 2005, 127, 13167 https://doi.org/10.1021/ja0440248
  40. Choudary, B. M.; Mahendar, K.; Kantam, M. L.; Ranganath, K. V. S.; Athar, T. Adv. Synth. Catal. 2006, 348, 1977 https://doi.org/10.1002/adsc.200606001
  41. Guerreiro, E. D.; Gorriz, O. F.; Rivarola, J. B.; Arrua, L. A. Appl. Catal. A 1997, 165, 259 https://doi.org/10.1016/S0926-860X(97)00207-X
  42. Carniti, P.; Gervasini, A.; Modica, V. H.; Ravsio, N. Appl. Catal. B 2000, 28, 175 https://doi.org/10.1016/S0926-3373(00)00172-7
  43. Koryabkina, N. A.; Phatak, A. A.; Ruettinger, W. F.; Farrauto, R. J.; Ribeiro, F. H. J. Catal. 2003, 217, 233
  44. Martinez-Arias, A.; Hungria, A. B.; Fernandez-Garcia, M.; Conesa, J. C.; Munuera, G. J. Phys. Chem. B 2004, 108, 17983 https://doi.org/10.1021/jp0465837
  45. Bennici, S.; Auroux, A.; Guimon, C.; Gervasini, A. Chem. Mater. 2006, 18, 3641 https://doi.org/10.1021/cm060241r
  46. Gervasini, A.; Carniti, P.; Bennici, S.; Messi, C. Chem. Mater. 2007, 19, 1319 https://doi.org/10.1021/cm062503v
  47. Rout, L.; Sen, T. K.; Punniyamurthy, T. Angew. Chem. Int. Ed. 2007, 46, 1 https://doi.org/10.1002/anie.200690172
  48. Kantam, M. L.; Laha, S.; Yadav, J.; Likhar, P. R.; Sreedhar, B.; Choudary, B. M. Adv. Synth. Catal. 2007, 349, 1797 https://doi.org/10.1002/adsc.200600481
  49. Rout, L.; Jammi, S.; Punniyamurthy, T. Org. Lett. 2007, 9, 3397 https://doi.org/10.1021/ol0713887
  50. Zhu, J.; Li, D.; Chen, H.; Yang, X.; Lu, L.; Wang, X. Materials Lett. 2004, 58, 3324 https://doi.org/10.1016/j.matlet.2004.06.031
  51. JCPDS-International Centre for Diffraction Data PCPDFWIN, V. 2.4; 2003
  52. L'abbé, G. Chem. Rev. 1969, 69, 345 https://doi.org/10.1021/cr60259a004
  53. Kulkarni, A. A.; Maki, K. Org. Synth. 2006, 83, 200 https://doi.org/10.15227/orgsyn.083.0200
  54. Müller, P.; Imogaï, H. Tetrahedron: Asymmetry 1998, 9, 4419 https://doi.org/10.1016/S0957-4166(98)00469-8
  55. Hooper, N.; Beeching, L. J.; Dyke, J. M.; Morris, A.; Ogden, J. S.; Dias, A. A.; Costa, M. L.; Barros, M. T.; Cabral, M. H.; Moutinho, A. M. C. J. Phys. Chem. A 2002, 106, 9968 https://doi.org/10.1021/jp020625e
  56. Appukkuttan, P.; Dehaen, W.; Fokin, V. V.; Van der Eycken, E. Org. Lett. 2004, 6, 4223 https://doi.org/10.1021/ol048341v
  57. Beckmann, H. S. G.; Wittmann, V. Org. Lett. 2007, 9, 1 https://doi.org/10.1021/ol0621506

Cited by

  1. Experimental Investigation on the Mechanism of Chelation-Assisted, Copper(II) Acetate-Accelerated Azide–Alkyne Cycloaddition vol.133, pp.35, 2011, https://doi.org/10.1021/ja203733q
  2. Copper Based Nanoparticles-Catalyzed Organic Transformations vol.17, pp.3-4, 2013, https://doi.org/10.1007/s10563-013-9159-2
  3. CuI nanoparticles: a highly active and easily recyclable catalyst for the synthesis of 2-amino-3,5-dicyano-6-sulfanyl pyridines vol.34, pp.3, 2013, https://doi.org/10.1080/17415993.2012.728220
  4. Copper(0) Nanoparticles in Click Chemistry: Synthesis of 3,5-Disubstituted Isoxazoles vol.52, pp.6, 2015, https://doi.org/10.1002/jhet.2065
  5. A copper acetate/2-aminobenzenthiol complex supported on magnetite/silica nanoparticles as a highly active and recyclable catalyst for 1,2,3-triazole synthesis vol.5, pp.130, 2015, https://doi.org/10.1039/C5RA22909J
  6. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis vol.116, pp.6, 2016, https://doi.org/10.1021/acs.chemrev.5b00482
  7. Green Catalytic Process for Click Synthesis Promoted by Copper Oxide Nanocomposite Supported on Graphene Oxide vol.358, pp.7, 2016, https://doi.org/10.1002/adsc.201501072
  8. When CuAAC 'Click Chemistry' goes heterogeneous vol.6, pp.4, 2016, https://doi.org/10.1039/C5CY01847A
  9. Copper(II) Acetylacetonate: An Efficient Catalyst for Huisgen-Click Reaction for Synthesis of 1,2,3-Triazoles in Water vol.35, pp.8, 2017, https://doi.org/10.1002/cjoc.201700007
  10. Automated Synthesis of a 96 Product-Sized Library of Triazole Derivatives Using a Solid Phase Supported Copper Catalyst vol.15, pp.5, 2010, https://doi.org/10.3390/molecules15053087
  11. ChemInform Abstract: Nanocrystalline Copper Oxide(II)-Catalyzed Alkyne-Azide Cycloadditions. vol.40, pp.1, 2009, https://doi.org/10.1002/chin.200901135
  12. Cu2O Nanocubes Catalyzed Difunctionalization Reaction of Vinyl Arenes with Cyclic Ethers vol.31, pp.12, 2008, https://doi.org/10.5012/bkcs.2010.31.12.3509
  13. Monosaccharide as a Central Scaffold Toward the Construction of Salicylate-Based Bidentate PTP1B Inhibitors via Click Chemistry vol.32, pp.3, 2008, https://doi.org/10.5012/bkcs.2011.32.3.1000
  14. Molecular-Scale Investigation of Reconstructed Copper Surface Induced by Dissociative Adsorption of O2 vol.32, pp.4, 2008, https://doi.org/10.5012/bkcs.2011.32.4.1129
  15. Magnetic Isinglass a Nano‐Bio Support for Copper Immobilization: Cu-IG@Fe3O4a Heterogeneous Catalyst for Triazoles Synthesis vol.3, pp.19, 2008, https://doi.org/10.1002/slct.201800501
  16. Catalytic performance of Cu(II)-supported graphene quantum dots modified NiFe2O4 as a proficient nano-catalyst in the synthesis of 1,2,3-triazoles vol.151, pp.7, 2008, https://doi.org/10.1007/s00706-020-02652-z
  17. CLICK-17, a DNA enzyme that harnesses ultra-low concentrations of either Cu + or Cu 2+ to catalyze the azide-alkyne ‘click’ reaction in water vol.48, pp.13, 2008, https://doi.org/10.1093/nar/gkaa502
  18. Graphene Oxide Functionalized Zn(II) Salen Complex: An Efficient and New Route for the Synthesis of 1,2,3‐Triazole Derivatives vol.5, pp.33, 2008, https://doi.org/10.1002/slct.202002708