• 제목/요약/키워드: CuInS2

Search Result 2,269, Processing Time 0.035 seconds

Fabrication and Characteristics of $CuInS_2$ thin films produced by Vacuum Evaporation (진공증착에 의해 제조된 $CuInS_2$ 박막의 제작 및 특성)

  • Yang, Hyeon-Hun;Jeong, Woon-Jo;Kim, Duck-Tae;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.15-17
    • /
    • 2008
  • $CuInS_2$ thin films were synthesized by sulpurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furance annealing at temperature 200[$^{\circ}C$]. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_2$ thin films with non-stoichiometry composition. $CuInS_2$ thin film was well made at the heat treatment 200[$^{\circ}C$] of SLG/Cu/In/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and hall measurement system. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}[cm^{-3}]$, 312.502[$cm^2/V{\cdot}s$] and $2.36{\times}10^{-2}[{\Omega}{\cdot}cm]$, respectively.

  • PDF

Fabrication and Characteristics of $CuInS_2$ thin films produced by Vacuum Evaporation (진공증착에 의해 제조된 $CuInS_2$ 박막의 제작 및 특성)

  • Yang, Hyeon-Hun;Kim, Young-Jun;So, Soon-Youl;Jeong, Woon-Jo;Park, Gye-Choon;Lee, Jin;Chung, Hae-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.68-70
    • /
    • 2006
  • $CuInS_2$ thin films were synthesized by sulpurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furance annealing at temperature 200[$^{\circ}C$]. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_2$ thin films with non-stoichiometry composition. $CuInS_2$ thin film was well made at the heat treatment 200 [$^{\circ}C$] of SLG/Cu/In/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1:1:2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and hall measurement system. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}[cm^{-3}]$, $312.502[cm^2/V{\cdot}s]$ and $2.36{\times}10^{-2}[{\Omega}{\cdot}cm]$, respectively.

  • PDF

Fabrication of Cu2ZnSnS4 Films by Rapid Thermal Annealing of Cu/ZnSn/Cu Precursor Layer and Their Application to Solar Cells

  • Chalapathy, R.B.V.;Jung, Gwang Sun;Ko, Young Min;Ahn, Byung Tae;Kwon, HyukSang
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.82-89
    • /
    • 2013
  • $Cu_2ZnSnS_4$ thin film have been fabricated by rapid thermal annealing of dc-sputtered metal precursor with Cu/ZnSn/Cu stack in sulfur ambient. A CZTS film with a good uniformity was formed at $560^{\circ}C$ in 6 min. $Cu_2SnS_3$ and $Cu_3SnS_4$ secondary phases were present at $540^{\circ}C$ and a trace amount of $Cu_2SnS_3$ secondary phase was present at $560^{\circ}C$. Single-phase large-grained CZTS film with rough surface was formed at $560^{\circ}C$. Solar cell with best efficiency of 4.7% ($V_{oc}=632mV$, $j_{sc}=15.8mA/cm^2$, FF = 47.13%) for an area of $0.44cm^2$ was obtained for the CZTS absorber grown at $560^{\circ}C$ for 6 min. The existence of second phase at lower-temperature annealing and rough surface at higher-temperature annealing caused the degradation of cell performance. Also poor back contact by void formation deteriorated cell performance. The fill factor was below 0.5; it should be increased by minimizing voids at the CZTS/Mo interface. Our results suggest that CZTS absorbers can be grown by rapid thermal annealing of metallic precursors in sulfur ambient for short process times ranging in minutes.

Photoluminescience Properties and Growth of $CuAlSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CuAlSe_2$ 단결정 박막 성장과 광발광 특성)

  • Lee, S.Y.;Hong, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.386-391
    • /
    • 2003
  • Sing1e crystal $CuAlSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $410^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$source at $680^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence(PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CuAlSe_2$ thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}$ and $295\;cm^2/V{\cdot}\;s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.86\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;155K)$. After the as-grown single crystal $CuAlSe_2$ thin films were annealed in Cu-, Se-, and Al-atmospheres, the origin of point defects of single crystal $CuAlSe_2$ thin films has been investigated by PL at 10 K. The native defects of $V_{Cd}$, $V_{Se}$, $Cd_{int}$, and $Se_{int}$ obtained by PL measurements were classified as donors or accepters. And we concluded that the heat-treatment in the Cu-atmosphere converted single crystal $CuAlSe_2$ thin films to an optical n-type. Also, we confirmed that Al in $CuAlSe_2/GaAs$ did not form the native defects because Al in single crystal $CuAlSe_2$ thin films existed in the form of stable bonds.

  • PDF

Synthesis of CuSbS2 and CuSbSe2 Nanocrystals by a Mechanochemical Method (기계화학적 방법에 의한 CuSbS2와 CuSbSe2 나노입자의 합성)

  • Park, Bo-In;Lee, Seung Yong;Lee, Doh-Kwon
    • Current Photovoltaic Research
    • /
    • v.5 no.4
    • /
    • pp.140-144
    • /
    • 2017
  • $CuSbS_2$ (CAS) and $CuSbSe_2$ (CASe) nanocrystals (NCs), which consist of earth-abundant elements, were synthesized by a mechanochemical method. Elemental precursors such as copper, antimony, sulfur, and selenium were used without adding any organic solvents or additives. The NCs were synthesized by milling for a few hours. The sudden phase changes occurred by self-ignition and propagation, as previously observed in other mechanochemical synthetic processes. The XRD, Raman, and TEM analysis were carried out to determine the crystallinity and secondary phase of the as-synthesized CAS and CASe NCs, confirming the phase-pure synthesis of CAS and CASe. Optical properties were investigated by UV-Vis spectroscopy and it was observed that the band gap energies were about 1.1 and 1.5 eV, respectively for CAS and CASe, suggesting the potential for the use as solar cell materials. The NC colloids dispersed in anhydrous ethanol were prepared and coated on Mo substrates by a facile doctor-blade method. The investigation on the solar cell properties of the as-synthesized materials is underway.

Effect of Sputtering Power on Structural and Optical Properties of CuS Thin Films Deposited by RF Magnetron Sputtering Method (RF 마그네트론 스퍼터링 방법으로 증착된 CuS 박막의 구조적 및 광학적 특성에 대한 스퍼터링 전력의 영향)

  • Lee, Sangwoon;Shin, Donghyeok;Son, Young Guk;Son, Chang Sik;Hwang, Donghyun
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • CuS thin films were deposited on glass substrates at room temperature by RF magnetron sputtering. The structural and optical properties of CuS thin films grown by varying RF-power from 40 W to 100 W were studied. From the XRD analysis, we confirmed hexagonal crystal structures grown in the preferred orientation of the (110) plane in all CuS thin films, and the intensity of the main diffraction peak increased in proportion to the increase of RF-power. In the case of CuS thin film deposited at 40W, small-sized particles formed a thin and dense surface morphology with narrow pore spacing, relatively. As the power increased, the grain size and grain boundary spacing increased sequentially. The peaks for the binding energy of Cu 2p3/2 and Cu 2p1/2 were determined at 932.1 eV and 952.0 eV, respectively. The difference in binding energy for the Cu2+ states was the same at 19.9 eV regardless of process parameters. The transmittance and band gap energy in the visible region tended to decrease with increasing sputtering powers.

A Study of the Properties of CuInS2 Thin Film by Sulfurization

  • Yang, Hyeon-Hun;Park, Gye-Choon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.73-76
    • /
    • 2010
  • The copper indium disulfide ($CuInS_2$) thin film was manufactured using sputtering and thermal evaporation methods, and the annealing with sulfurization process was used in the vacuum chamber to the substrate temperature on the glass substrate, the annealing temperature and the composition ratio, and the characteristics thereof were investigated. The $CuInS_2$ thin film was manufactured by the sulfurization of a soda lime glass (SLG) Cu/In/S stacked [1] elemental layer deposited on a glass substrate by vacuum chamber annealing [2] with sulfurization for various times at a temperature of substrate temperature of $200^{\circ}C$. The structure and electrical properties of the film was measured in order to determine the optimum conditions for the growth of $CuInS_2$ ternary compound semiconductor $CuInS_2$ thin films with a non-stoichiometric composition. The physical properties of the thin film were investigated under various fabrication conditions [3,4], including the substrate temperature, annealing temperature and annealing time by X-ray diffraction (XRD), field Emission scanning electron microscope (FE-SEM), and Hall measurement systems. [5] The sputtering rate depending upon the DC/RF power was controlled so that the composition ratio of Cu versus In might be around 1:1, and the substrate temperature affecting the quality of the film was varied in the range of room temperature (RT) to $300^{\circ}C$ at intervals of $100^{\circ}C$, and the annealing temperature of the thin film was varied RT to $550^{\circ}C$ in intervals of $100^{\circ}C$.

Physical Properties with Cu/(In+Ga) Ratios of Cu(InGa)$Se_2$ Films (Cu(InGa)$Se_2$ 박막의 Cu/(In+Ga) 조성비에 따른 전기적 물성특성)

  • Kim, S.K.;Lee, J.L.;Kang, K.H.;Yoon, K.H.;Song, J.;Park, I.J.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1584-1586
    • /
    • 2002
  • CuIn$Se_2$ (CIS) and related compounds such as Cu($In_xGa_{1-x})Se_2$(CIGS) have been studied by their potential for use in photovoltaic devices. CIS thin film materials which have high absorption coefficient and wide bandgap, have attracted much attention as an alternative to crystalline and amorphous silicon solar cells currently in use. Cu-rich CIGS film have very low resistivity, due to coexistence of the semimetallic $Cu_{2-x}Se$. In-rich CIGS films show high resistivity, since these films are compensated films without the $Cu_{2-x}Se$ phase. Optical properties of the CIGS films also change in accordance with the resistivity for the Cu/(In+Ga) ratio. The Cu-rich films have different spectra from In-rich films in near infrared wavelengths.

  • PDF

One-pot Synthesis of Dihydropyrimidinones Using Polyoxometalate Tri-supported Transition Metal Complexes (Polyoxometalate Tri-supported Transition Metal Complexes를 이용한 Dihydropyrimidinones의 one-pot 합성)

  • Fazaeli, Razieh;Aliyan, Hamid;Mohammadifar, Foroogh;Zamani, Amir Abbas;Bagi, Mohammad Javad
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.666-672
    • /
    • 2011
  • The catalytic activity of an inorganic-organic complex with a vanadium-substituted polyoxometalate 1, formulated as [Cu(2,2'-bipy)]$[Cu(2,2'-bipy)_2]_2[PMo_8V_6O_{42}]{\cdot}1.5H_2O$ was studied in the Biginelli reactions. The obtained results showed that, in the one-pot synthesis of dihydropyrimidinones, the turnover frequencies (TOF) for the [Cu(2,2'-bipy)]$[Cu(2,2'-bipy)_2]_2[PMo_8V_6O_{42}]{\cdot}1.5H_2O$ catalyst were higher than the $H_3PMo_{12}O_{40}$ catalyst.

Ion-Imprinted Polymers Modified Sensor for Electrochemical Detection of Cu2+

  • An, Zhuolin;Liu, Weifeng;Liang, Qi;Yan, Guang;Qin, Lei;Chen, Lin;Wang, Meiling;Yang, Yongzhen;Liu, Xuguang
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850140.1-1850140.9
    • /
    • 2018
  • An electrochemical sensor ($Cu^{2+}$-IIPs/GCE) was developed for detection of $Cu^{2+}$ in water. $Cu^{2+}$-IIPs/GCE was prepared by dispersing $Cu^{2+}$ imprinted polymers ($Cu^{2+}$-IIPs) on a preprocessed glassy carbon electrode. $Cu^{2+}$-IIPs were synthesized on the surface of modified carbon spheres by ion imprinting technology. The electrochemical performance of $Cu^{2+}$-IIPs/GCE was evaluated by differential pulse voltammetry method. The response of $Cu^{2+}$-IIPs/GCE to $Cu^{2+}$ was linear in $1.0{\times}10^{-5}mol/L$ to $1.0{\times}10^{-3}mol/L$. The detection limit was $5.99{\times}10^{-6}mol/L$ (S=N = 3). The current response value of $Cu^{2+}$-IIPs/GCE was 2.14 times that of the nonimprinted electrode. These results suggest that $Cu^{2+}$-IIPs/GCE can detect the concentration of $Cu^{2+}$ in water, providing a new way for heavy metal ions adsorption and testing.