DOI QR코드

DOI QR Code

Effect of Sputtering Power on Structural and Optical Properties of CuS Thin Films Deposited by RF Magnetron Sputtering Method

RF 마그네트론 스퍼터링 방법으로 증착된 CuS 박막의 구조적 및 광학적 특성에 대한 스퍼터링 전력의 영향

  • Lee, Sangwoon (School of Materials Science and Engineering, Pusan National University) ;
  • Shin, Donghyeok (School of Materials Science and Engineering, Pusan National University) ;
  • Son, Young Guk (School of Materials Science and Engineering, Pusan National University) ;
  • Son, Chang Sik (Division of Materials Science and Engineering, Silla University) ;
  • Hwang, Donghyun (Division of Materials Science and Engineering, Silla University)
  • 이상운 (재료공학과, 부산대학교) ;
  • 신동혁 (재료공학과, 부산대학교) ;
  • 손영국 (재료공학과, 부산대학교) ;
  • 손창식 (신소재공학부, 신라대학교) ;
  • 황동현 (신소재공학부, 신라대학교)
  • Received : 2019.12.16
  • Accepted : 2020.01.16
  • Published : 2020.03.31

Abstract

CuS thin films were deposited on glass substrates at room temperature by RF magnetron sputtering. The structural and optical properties of CuS thin films grown by varying RF-power from 40 W to 100 W were studied. From the XRD analysis, we confirmed hexagonal crystal structures grown in the preferred orientation of the (110) plane in all CuS thin films, and the intensity of the main diffraction peak increased in proportion to the increase of RF-power. In the case of CuS thin film deposited at 40W, small-sized particles formed a thin and dense surface morphology with narrow pore spacing, relatively. As the power increased, the grain size and grain boundary spacing increased sequentially. The peaks for the binding energy of Cu 2p3/2 and Cu 2p1/2 were determined at 932.1 eV and 952.0 eV, respectively. The difference in binding energy for the Cu2+ states was the same at 19.9 eV regardless of process parameters. The transmittance and band gap energy in the visible region tended to decrease with increasing sputtering powers.

Keywords

References

  1. Chaki, S. H., Tailor, J. P., Deshpande, M. P., "Covllite CuS-Single crystal growth by chemical vapour transport (CVT) technique and characterization," Mat. Sci. Semicon. Proc., Vol. 27, pp. 577-585, 2014. https://doi.org/10.1016/j.mssp.2014.07.038
  2. Hu, R., Zhang, R., Ma, Y., Liu, W., Chu, L., Mao, W., Zhang, J., Yang, J., Pu, Y., Li, X., "Enhanced hole transfer in hole-conductor-free perovskite solar cells via incorporating CuS into carbon electrodes," Appl. Phys. Lett., Vol. 462, pp. 840-846, 2018.
  3. Ivan G., "Optical and electrical properties of copper sulfide films of variable composition," J. Solid State Chem., Vol. 114, pp. 469-475, 1995. https://doi.org/10.1006/jssc.1995.1070
  4. Page, M., Niitsoo, O., Itzhaik, Y., Cahen, D., Hodes, G., "Copper sulfide as a light absorber in wet-chemical synthesized extremely thin absorber (ETA) solar cells," Energy Environ. Sci., Vol. 2, pp. 220-223, 2009. https://doi.org/10.1039/B813740D
  5. Chung, J. S., Sohn, H. J., "Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries," J. Power Sources, Vol. 108, pp. 226-231, 2002. https://doi.org/10.1016/S0378-7753(02)00024-1
  6. Sabah, F. A., Ahmed, N. M., Hassan, Z., Rasheed, H. S., "High performance CuS p-type thin film as a hydrogen gas sensor," Sens. Actuators A, Vol. 249, pp. 68-76, 2016. https://doi.org/10.1016/j.sna.2016.08.026
  7. Masar, M., Urbanek, M., Urbanek, P., Machovska, Z., Maslik, J., "Synthesis, characterization and examination of photocatalytic performance of hexagonal covellite CuS nanoplates," Mater. Chem. Phys., Vol. 237, p. 121823, 2019. https://doi.org/10.1016/j.matchemphys.2019.121823
  8. Isac, L., Andronic, L., Enesca, A., Duta, A., "Copper sulfide films obtained by spray pyrolysis for dyes photodegradation under visible light irradiation," J. Photochem. Photobiol. A Chem., Vol. 252, pp. 53-59, 2013. https://doi.org/10.1016/j.jphotochem.2012.11.011
  9. Lu, Q., Gao, F., Zhao, D., "One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amineassisted hydrothermal process," Nano Lett., Vol. 2, pp. 725-728, 2002. https://doi.org/10.1021/nl025551x
  10. Reijnen, L., Meester, B., Lange, F.D., Joop Schoonman, A., Goossens, A., "Comparison of CuxS films grown by atomic layer deposition and chemical vapor deposition." Chem. Mater., Vol. 17, pp. 2724-2728, 2005. https://doi.org/10.1021/cm035238b
  11. Tripathi, T. S., Lahtinen, J., Karppinen, M., "Atomic layer deposition of conducting CuS thin films from elemental sulfur," Adv. Mater. Interfaces., Vol. 5, p. 1701366, 2018. https://doi.org/10.1002/admi.201701366
  12. Ghribi, F., Alyamani, A., Ben Ayadi, Z., Djessas, K., EL Mir, L., "Study of CuS thin films for solar cell applications sputtered from nanoparticles synthesised by hydrothermal route," Energy Procedia., Vol. 84, pp. 197-203, 2015. https://doi.org/10.1016/j.egypro.2015.12.314
  13. Dong, Y., He, J., Sun, L., Chen, Y., Yang, P., Chu, J., "Effect of sulfurization temperature on properties of Cu2SnS3 thin films and solar cells prepared by sulfurization of stacked metallic precursors.," Mater. Sci. Semicond. Process., Vol. 38, pp. 171-176, 2015. https://doi.org/10.1016/j.mssp.2015.04.026
  14. Hong, X., Xu, Z., Zhang, F., He, C., Gao, X., Liu, Q., Guo, W., Liu, X., Ye, M., "Sputtered seed-assisted growth of CuS nanosheet arrays as effective counter electrodes for quantum dot-sensitized solar cells," Mater. Lett., Vol. 203, pp. 73-76, 2017. https://doi.org/10.1016/j.matlet.2017.05.078
  15. Patterson, A. L., "The scherrer formula for X-ray particle size determination," Phys. Rev., Vol. 56, pp. 978-982, 1939. https://doi.org/10.1103/PhysRev.56.978
  16. Pejjai, B., Reddivari, M., Kotte, T. R. R., "Phase controllable synthesis of CuS nanoparticles by chemical co-precipitation method: Effect of copper precursors on the properties of CuS. Mater," Chem. Phys., Vol. 239, p. 122030, 2020. https://doi.org/10.1016/j.matchemphys.2019.122030
  17. Zhang, L. J., Xie, T. F., Wang, D. J., Li, S., Wang, L. L., Chen, L. P., Lu, Y.C., "Noble-metal-free CuS/CdS composites for photocatalytic H2 evolution and its photogenerated charge transfer properties," Int. J. Hydrogen Energy., Vol. 38, pp. 11811-11817, 2013. https://doi.org/10.1016/j.ijhydene.2013.06.115
  18. Manoj, P. K., Joseph, B., Vaidyan, V. K., Amma, D. S. D., "Preparation and characterization of indium-doped tin oxide thin films," Ceram. Int., Vol. 33, pp. 273-278, 2007. https://doi.org/10.1016/j.ceramint.2005.09.016
  19. Tauc, J., Grigorovici, R., Vancu, A., "Optical properties and electronic structure of amorphous germanium," Phys. Stat. Sol., Vol. 15, pp. 627-637, 1966. https://doi.org/10.1002/pssb.19660150224
  20. Sartale, S. D., Lokhande, C. D., "Growth of copper sulphide thin films by succesive ionic layer adsorption and reaction (SILAR) method," Mater. Chem. Phys., Vol. 65, pp. 63-67, 2000. https://doi.org/10.1016/S0254-0584(00)00207-8
  21. Yuan, K. D., Wu, J. J., Liu, M. L., Zhang, L. L., Xu, F. F., Chen, L. D., Huang, F. Q., "Fabrication and microstructure of p-type transparent conducting CuS thin film and its application in dye-sensitized solar cell," Appl. Phys. Lett., Vol. 93, p. 132106, (2008). https://doi.org/10.1063/1.2991441
  22. Adelifard, M., Eshghi, H., Mehdi, M., Mohagheghi, B., "An investigation on substrate temperature and copper to sulphur molar ratios on optical and electrical properties of nanostructural CuS thin films prepared by spray pyrolysis method," Appl. Surf. Sci., Vol. 258, pp. 5733-5738, 2012. https://doi.org/10.1016/j.apsusc.2012.02.079