• 제목/요약/키워드: Cu-Fe alloys

검색결과 175건 처리시간 0.023초

비정질 $Fe_{83}B_9Nb_7Cu_1$의 M$\ (Distributions of Hyperfine Parameters in Amorphous $Fe_{83}B_9Nb_7Cu_1$ Alloys)

  • 윤성현;김성백;김철성
    • 한국자기학회지
    • /
    • 제9권6호
    • /
    • pp.271-277
    • /
    • 1999
  • M ssbauer 분광법을 이용하여 비정질합금 Fe83B9Nb7Cu1의 자기적 성질을 연구하였다. 개선된 Vincze의 방법을 적용하여 각 온도에서 초미세자기장, 이성질체 이동치, 그리고 quadrupole line broadening의 분포함수들을 얻었고 큐리온도는 393K, Hhf(0)는 231kOe로 산출되었다. 환산된 평균 초미세 자기장(reduced average hyperfine field)의 온도 변화는 S=1 자기화 곡선에 비해 급히 감소하는 양상을 보였고 이를 설명하기 위해 Handrich의 분자장 이론에서 교환 상호 작용의 척도인 에 =0.75-0.64(T/Tc)+0.47(T/Tc)2의 온도 의존성을 도입하였다. 평균 초미세 자기장(Hhf(T))은 저온에서 스핀파 여기에 의한 공식 Hhf(T)=Hhf(0)[1-0.44(T/Tc)3/2-0.28(T/Tc)5/2- ]으로 분석하였고, 큐리온도 부근에서는 1.00[1-T/Tc]0.39의 관계를 갖는 것으로 나타났다. 초미세 자기장 분포곡선의 선폭은 13K에서 102kOe (3.29 mm/s)였으며, 오도가 증가함에 따라 감소했다. 큐리온도 이상에서 평균 quadrupole splitting값은 0.43 mm/s였으며 quadrupole 이동치 분포에 의한 선폭 증가는 13K에서 0.1 mm/s, 320K에서는 0.072 mm/s 정도로 초미세 자기장 분포나 quadrupole line broadening에 의한 선폭 증가보다 작았다. 이성질체 이동치의 온도 변화에 Debye 모형을 적용하여 Debye 온도를 D=424K로 산출하였다.

  • PDF

18K 레드 골드 정함량 솔더의 In 첨가에 따른 물성변화 (Properties of the 18K Red Gold Solder Alloys with Indium Contents)

  • 송정호;송오성
    • 한국재료학회지
    • /
    • 제28권2호
    • /
    • pp.89-94
    • /
    • 2018
  • The properties of 18 K red gold solder alloys were investigated by changing the content of In up to 10.0 wt% in order to replace the hazardous Cd element. Cupellation and energy dispersive X-ray spectroscopy (EDS) were used to check the composition of each alloy, and FE-SEM and UV-VIS-NIR-Colormeter were employed for microstructure and color characterization. The melting temperature, hardness, and wetting angle of the samples were determined by TGA-DTA, the Vickers hardness tester, and the Wetting angle tester. The cupellation result confirmed that all the samples had 18K above 75.0wt%-Au. EDS results showed that Cu and In elements were alloyed with the intended composition without segregation. The microstructure results showed that the amount of In increased, and the grain size became smaller. The color analysis revealed that the proposed solders up to 10.0 wt% In showed a color similar to the reference 18 K substrate like the 10.0 wt% Cd solder with a color difference of less than 7.50. TGA-DTA results confirmed that when more than 5.0 wt% of In was added, the melting temperature decreased enough for the soldering process. The Vickers hardness result revealed that more than 5.0 wt% In solder alloys had greater hardness than 10.0 wt% Cd solder, which suggested that it was more favorable in making a wire type solder. Moreover, all the In solders showed a lower wetting angle than the 10.0 wt% Cd solder. Our results suggested that the In alloyed 18 K red gold solders might replace the conventional 10.0 wt% Cd solder with appropriate properties for red gold jewelry soldering.

펄스 YAG 레이저 용접시 유기하는 플라즈마의 스펙트럼선 동정과 발광특성 (Spectral Line Identification and Emission Characteristics of the Laser-Induced Plasma in Pulsed Nd:YAG Laser Welding)

  • 김종도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권3호
    • /
    • pp.360-368
    • /
    • 1999
  • The paper describes spectroscopic characteristics of plasma induced in the pulsed YAG laser welding of alloys containing a large amount of volatile elements. The authors have conducted the spectroscopic analyses of laser induced Al-Mg alloys plasma in the air and argon atmosphere. In the air environment the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn and singly ionized Mg lines as well as the intense molecular spectra of ALO and MgO formed by chemi-cal reactions of evaporated Al and Mg atoms from the pool surface with oxygen in the air. In argon atmosphere MgO and AlO spectra vanished but AlH spectrum was detected. the hydrogen source was presumable hydrogen dissolved in the base metals water absorbed on the surface oxide layer or $H_2$ and $H_2O$ in the shielding gas. The resonant lines of Al and Mg were strongly self-absorbed in particular self-absorption of the Mg line was predominant. These results show that the laser induced plasma was made of metallic vapor with relatively low temperature and high density.

  • PDF

Effects of Sulfuric Acid Concentration and Alloying Elements on the Corrosion Resistance of Cu-bearing low Alloy Steels

  • Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • 제17권4호
    • /
    • pp.154-165
    • /
    • 2018
  • During the process of sulfur dioxide removal, flue gas desulfurization equipment provides a serious internal corrosion environment in creating sulfuric acid dew point corrosion. Therefore, the utilities must use the excellent corrosion resistance of steel desulfurization facilities in the atmosphere. Until now, the trend in developing anti-sulfuric acid steels was essentially the addition of Cu, in order to improve the corrosion resistance. The experimental alloy used in this study is Fe-0.03C-1.0Mn-0.3Si-0.15Ni-0.31Cu alloys to which Ru, Zn and Ta were added. In order to investigate the effect of $H_2SO_4$ concentration and the alloying elements, chemical and electrochemical corrosion tests were performed. In a low concentration of $H_2SO_4$ solution, the major factor affecting the corrosion rate of low alloy steels was the exchange current density for $H^+/H_2$ reaction, while in a high concentration of $H_2SO_4$ solution, the major factors were the thin and dense passive film and resulting passivation behavior. The alloying elements reducing the exchange current density in low concentration of $H_2SO_4$, and the alloying elements decreasing the passive current density in high concentration of $H_2SO_4$, together play an important role in determining the corrosion rate of Cu-bearing low alloy steels in a wide range of $H_2SO_4$ solution.

$\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) 비정질합금의 열적안정성 (Thermal Stability of $\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) Amorphous Alloys)

  • 국진선;전우용;진영철;김상협
    • 한국재료학회지
    • /
    • 제7권3호
    • /
    • pp.218-223
    • /
    • 1997
  • 과냉각액체구역(${\Delta}T_{x}=T_{x}-T_{g}$)을 갖는 $Fe_{80}P_{10}C_{6}B_{4}$ 조성에 천이금속(Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Co, Ni, Pd, Pt및 Cu)를 첨가하여 이들 원소가 유리화온도($T_{g}$), 결정화온도($T_{x}$) 및 과냉액체구역 (${\Delta}T_{x}$)에 미치는 영향에 \ulcorner여 조사하였다. $Fe_{80}P_{10}C_{6}B_{4}$ 합금의 ${\Delta}T_{x}$ 값은 27K였으나 이 합금에 Hf, Ta 및 Mo을 각각 4at%첨가하면 그 값이 40k 이상으로 증가하였다. 이같은 ${\Delta}T_{x}$ 값의 증가는 유리화온도($T_{g}$의 상승보다 결정화온도($T_{x}$)의 상승폭이 크기 때문이다. $T_{g}$$T_{x}$는 외각전자밀도(e/a)가 약 7.38에서 7.05로 감소할수록 상승하였다. e/a의 감소는 천이금속과 다른 구성원소(반금속)사이의 상호결합상태를 의미한다. 즉 $T_{g}$$T_{x}$의 상승은 강한 상호결합력에 기인하는 것으로 사료된다.

  • PDF

응착조건의 완전접촉문제 해석: 실험 및 수치해석과 이론해의 비교 (Analysis of a Complete Contact Problem in Bonded Condition: Comparison of Experimental-Numerical Analyses and Theoretical Solutions)

  • 김형규;장재원;이순복
    • 대한기계학회논문집A
    • /
    • 제39권6호
    • /
    • pp.583-588
    • /
    • 2015
  • 완전접촉 문제를 이론적으로 해석하기 위해서 점근해법이 많이 사용된다. 점근해로서의 응력장은 특이항 만으로 구성되므로 접촉경계로부터 멀어질수록 정확도가 감소한다. 이에 반해 유한요소해석 방법은 요소크기의 제한으로 인해 완전접촉 문제에서의 응력특이성을 엄밀히 표현할 수 없다. 따라서 본 연구에서는 이론적 해법을 보조하고 또 그와 비교하기 위해 응착접촉 상태에 있는 완전접촉 문제를 이론적으로 해석한 후, 모아레 실험 및 유한요소해석 방법으로 접촉부 부근의 응력장을 분석하였다. 실험은 알루미늄과 구리 합금을 접촉각 $120^{\circ}$, $135^{\circ}C$로 가공하여 수행하였으며 모아레 무늬로부터 얻은 변위장과 유한요소해석을 수행한 결과와 비교하였다. 이로부터 타당성이 확보된 수치적 방법을 이용하여 실험조건에서의 일반화 응력확대계수와 접촉부 응력장을 구하여 이론 해와 비교하였으며, 접촉경계로부터 멀어질 때 나타나는 이론과 수치 해의 차이를 분석하였다.

가스분무 공정에 의한 고강도 과공정 AI-Si 합금 분말의 제조 및 특성연구 II. 압출재 제조 및 기계적 특성 (Fabrication and Properties of High Strength Hypereutectic AI-Si Powders by a Gas Atomization Process II. Extrusion and Mechanical Properties)

  • 김용진;김진천
    • 한국분말재료학회지
    • /
    • 제15권2호
    • /
    • pp.142-147
    • /
    • 2008
  • The hypereutectic Al-20 wt%Si powders including some amount of Cu, Fe, Mg, Mn were prepared by a gas atomization process. In order to get highly densified Al-Si bulk specimens, the as-atomized and sieved powders were extruded at $500^{\circ}C$, Microstructure and tensile properties of the extruded Al-Si alloys were investigated in this study. Relative density of the extruded samples was over 98%. Ultimate tensile strength (UTS) in stress-strain curves of the extruded powders increased after T6 heat treatments. Elongation of the samples was also increased from 1.4% to 3.2%. The fracture surfaces of the tested pieces showed a fine microstructure and the average grain size was about $1{\mu}m$.

원전 해수 펌프 임펠러 합금의 케비테이션 피로 손상 해석 (An Analysis on Fatigue Fracture of Nuclear Pump Impeller Alloys by Ultrasonic Vibratory Cavitation Erosion)

  • 홍성모;이민구;김광호;이창규
    • 한국표면공학회지
    • /
    • 제39권1호
    • /
    • pp.35-42
    • /
    • 2006
  • In this study, the fatigue properties on the cavitation damage of the flame quenched 8.8Al-bronze (8.8Al-4.5Ni-4.5Fe-Cu) as well as the current nuclear pump impeller materials (8.8Al-bronze, STS316 and SR50A) has been investigated using an ultrasonic vibratory cavitation test. For this the impact loads of cavitation bubbles generated by ultrasonic vibratory device quantitatively evaluated and simultaneously the cavitation erosion experiments have been carried out. The fatigue analysis on the cavitation damage of the materials has been made from the determined impact load distribution (e.g. impact load, bubble count) and erosion parameters (e.g. incubation period, MDPR). According to Miner's law, the determined exponents b of the F-N relation ($F^b$ N = Constant) at the incubation stage (N: the number of fracture cycle) were 5.62, 4.16, 6.25 and 8.1 for the 8.8Al-bronze, flame quenched one, STS316 and SR50A alloys. respectively. At the steady state period, the exponents b of the F-N' curve (N': the number of cycle required for $1{\mu}m$ increment of MDP) were determined as 6.32, 5, 7.14 and 7.76 for the 8.8Al-bronze, flame quenched one, STS316, and SR50A alloys, respectively.

Mg+Al2Ca 첨가 ADC12 (Al-Si-Cu) 합금의 미세조직, 인장 및 고주기 피로 특성 (Microstructure, Tensile Strength, and High Cycle Fatigue Properties of Mg+Al2Ca added ADC12 (Al-Si-Cu) Alloy)

  • 김영균;김민종;김세광;윤영옥;이기안
    • 소성∙가공
    • /
    • 제26권5호
    • /
    • pp.306-313
    • /
    • 2017
  • This study investigated the microstructure, tensile strength, and high cycle fatigue properties of ADC12 aluminum alloys with different $Mg+Al_2Ca$ contents manufactured using die casting process. Microstructural observation identified the presence of ${\alpha}-Al$, eutectic Si, $Al_2Cu$, and Fe-intermetallic phases. The increase of $Mg+Al_2Ca$ content resulted in finer pore size and decreased pore distribution. Room temperature tensile strength tests were conducted at strain rate of $1{\times}10^{-3}/sec$. For 0.6%Mg ADC12, measured UTS, YS, and El were 305.2MPa, 157.0MPa, and 2.7%, respectively. For 0.8%Mg ADC12, measured UTS, YS, and El were 311.2 MPa, 159.4 MPa, and 2.4%, respectively. Therefore, 0.8% ADC12 alloy had higher strength and slightly decreased elongation compared to 0.6% Mg ADC12. High cycle fatigue tests revealed that 0.6% Mg ADC12 alloy had a fatigue limit of 150 MPa while 0.8% Mg ADC12 had a fatigue limit of 160MPa. It was confirmed that $Mg+Al_2Ca$ added ADC12 alloy achieved finer, spherical eutectic Si particles, and $Al_2Cu$ phases with greater mechanical and fatigue properties since size and distribution of pores and shrinkage cavities decreased as $Mg+Al_2Ca$ content increased.

Effect of Alloying on the Microstructure and Fatigue Behavior of Fe-Ni-Cu-Mo P/M Steels

  • Bohn, Dmitri A.;Lawley, Alan
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1997년도 춘계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.34-34
    • /
    • 1997
  • The effect of alloying mode and porosity on the axial tension-tension fatigue behavior of a P/M steel of nominal composition Fe-4w/o Ni-1.5w/o Cu-O.5w/o Mo-O.5w/o C has been evaluated. Alloying modes utilized were elemental powder mixing, partial alloying(distaloy) and prealloying by water atomization; in each case the carbon was introduced as graphite prior to sintering. Powder compacts were sintered($1120{\circ}C$/30 min.) in 7Sv/o $H_2$/25v/o $N_2$ to densities in the range 6.77-7.2 g/$cm^3$. The dependence of fatigue limit response on alloying mode and porosity was interpreted in terms of the constituent phases and the pore and fracture morphologies associated with the three alloying modes. For the same nominal composition, the three alloying modes resulted in different sintered microstructures. In the elemental mix alloy and the distaloy, the major constituent was coarse and fine pearlite, with regions of Ni-rich ferrite, Ni-rich martensite and Ni-rich areas. In contrast, the prealloy consisted primarily of martensite by with some Ni-rich areas. From an examination of the fracture surfaces following fatigue testing it was concluded that essentially all of the fracture surfaces exhibited dimpled rupture, characteristic of tensile overload. Thus, the extent of growth of any fatigue cracks prior to overload was small. The stress amplitude for the three alloying modes at 2x$l0^6$ was used for the comparison of fatigue strengths. For load cycles <3x$l0^5$, the prealloy exhibited optimum fatigue response followed by the distaloy and elemental mix alloy, respectively. At load cycles >2x$l0^6$, similar fatigue limits were exhibited by the three alloys. It was concluded that fatigue cracks propagate primarily through pores, rather than through the constituent phases of the microstructure. A decrease in pore SIze improved the S-N behavior of the sintered steel.

  • PDF