• Title/Summary/Keyword: Cu nanoparticle

Search Result 105, Processing Time 0.047 seconds

Size-dependent Toxicity of Metal Oxide Particles on the Soil Microbial Community and Growth of Zea Mays (산화 금속 입자 크기가 옥수수의 성장과 토양 미생물 군집에 미치는 독성)

  • Kim, Sung-Hyun;Jung, Mi-Ae;Lee, In-Sook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1069-1074
    • /
    • 2009
  • This study investigated soil microbial community and growth of Zea mays to compare the toxicity of nano and micro-sized Cu and Zn oxide particles in microcosm system. In the presence of nanoparticles, biomass of Zea mays reduced by 30% compared with micro-sized particles and inhibited growth. Dehydrogenase activity was inhibited by CuO nano although it was increased by ZnO nano particles. According to the Biolog test, the microbial diversity was decreased after exposed to CuO nanoparticles and ZnO microparticles. Therefore, though it is widely recognized that nanoparticles are more harmful than microparticles, we can conclude that the diversity of microbial community does not always influenced by the size of particles of nano and micro.

Toxicity Assessment of Nanopariticles Based on Seed Germination and Germination Index (씨앗발아 및 발아지수에 근거한 나노입자 독성평가)

  • Gu, Bonwoo;Kong, In Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.396-401
    • /
    • 2014
  • Nanomaterials have been widely used in many fields. This study investigates the effects of metal oxide nanoparticles (CuO, NiO, $TiO_2$, $Fe_2O_3$, $Co_3O_4$, ZnO) on germination and germination index (G.I.) of seeds, Lactuca and Raphanus. Under aqueous exposure, CuO on Lactuca shows the most significant impacts on activities compared to others, showing $EC_{50s}$ for germination and G.I. as 0.46 mg/L and 0.37%, respectively. The effects of nanoparticle phytotoxicity on seed Lactuca was much higher than that of Raphanus. In general, the toxicities on seed germination and germination index were as following orders : CuO > ZnO > NiO ${\gg}$ $TiO_2$, $Fe_2O_3$, $Co_3O_4$. No measurable inhibition was observed at 1,000 mg/L (maximum exposure concentration) of $TiO_2$, $Fe_2O_3$, $Co_3O_4$.

Effects of Heat Treatment in $N_2$ and Se Atmosphere on the Densification of Nanoparticle Derived Cu(In, Ga)$Se_2$ Absorber Layer (질소 및 셀레늄 분위기 열처리가 나노 입자 Cu(In, Ga) $Se_2$ 광흡수층의 치밀화에 미치는 영향)

  • Kim, Ki-Hyun;Ahn, Se-Jin;Chun, Young-Gab;Park, Byun-Ok;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.185-188
    • /
    • 2005
  • 나노 입자 분무 기법을 이용한 $Cu(In,\;Ga)Se_2$ (CIGS) 광흡수층 제조 기법은 고진공 장치를 사용하지 않는다는 점에서 대면적 저가형 CIGS 태양전지 양산에 적합한 차세대 기술로 인식되고 있다. 그러나 일반적으로 스프레이 된 상태의 CIGS충 자체는 태양전지 제조에 적합하지 않은데 이는 스프레이 막의 다공성 구조 때문이다. 본 연구에서는 나노입자 분무 기법을 이용하여 증착한 CIGS 광흡수층막을 질소 또는 셀레늄 분위기에서 열처리함으로써 태양전지 제조에 적합한 치밀한 구조의 CIGS 광흡수충을 제조하고자 하였다. 실험 결과, 질소 분위기 $500^{\circ}C$의 온도에서 1시간 열처리하여도 CIGS 나노 입자의 성장은 거의 일어나지 않는 것으로 나타났다. 반면 셀레늄 분위기 $500^{\circ}C$의 온도에서 30분 열처리시 입자 크기가 $1{\mu}m$이상인 치밀한 광흡수층을 얻을 수 있었다. 본 결과는 CIGS 나노 입자의 입자 성장 반응에서 열에너지 단독에 의한 표면 에너지 감소 효과는 미미하며 셀레늄 증기의 역할이 더욱 크다는 것을 의미하는 것이다.

  • PDF

Enhanced flux pinning property of GdBa2Cu3O7-x films by ferromagnetic surface decoration

  • Song, C.Y.;Oh, J.Y.;Ko, Y.J.;Lee, J.M.;Kang, W.N.;Kang, B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.21-25
    • /
    • 2020
  • We investigated the flux pinning property of GdBa2Cu3O7-x (GdBCO) films on top of La0.7Sr0.3MnO3 (LSMO) nanoparticles deposited by a surface decoration. Both GdBCO films and LSMO nano particles were deposited by pulsed laser deposition and the number of laser pulses were varied from 80 to 320 in order to control the density of the LSMO nanoparticles. The magnetization data at 77 K showed that the critical current density (Jc) was enhanced in all of the GdBCO films with LSMO nanoparticles and that the Jc enhancement was found to be inversely proportional to the LSMO nanoparticle density. Structural analyses revealed that LSMO nanoparticles induce a compressive strain in the GdBCO films resulting in a disordering in the CuO2 plane. Therefore, the enhanced flux pinning property in the GdBCO with LSMO nanoparticles was attributed to the competing effect between the increase of pinning centers and the increase of compressive strain in the superconducting phase.

Synthesis of Metal Nanoparticles for the Application of Electronic Device (전자장치 응용을 위한 금속(은, 구리) 나노입자의 합성)

  • Jun, Byung-Ho;Cho, Su-Hwan;Cho, Jeong-Min;Kim, Seong-Eun;Kim, Dong-Hoon;Kim, Seong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.53-53
    • /
    • 2010
  • The development of synthetic pathway to produce a highly yield nanoparticles is an important aspect of industrial technology. Herein, we report a simple, rapid approach to synthesize organic-soluble Cu and Ag nanoparticles in colloidal method for the application in a conductive pattern using inkjet printing. The silver nanoparticles have been synthesized in highly concentrated organic phase. The Cu nanoparticles have been synthesized by the reducing of the copper oxide materials using acid molecules in high concentrated organic phase. Their sintering and electric conductivity properties were investigated by melting process between $200^{\circ}C$ and $250^{\circ}C$ for application to printed electronics.

  • PDF

Synthesis and Characterization of TiO2, Cu2O and Al2O3 Aerosol Nanoparticles Produced by the Multi-Spark Discharge Generator

  • Efimov, Alexey;Lizunova, Anna;Sukharev, Valentin;Ivanov, Victor
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.123-129
    • /
    • 2016
  • The morphology, crystal structure and size of aerosol nanoparticles generated by erosion of electrodes made of different materials (titanium, copper and aluminum) in a multi-spark discharge generator were investigated. The aerosol nanoparticle synthesis was carried out in air atmosphere at a capacitor stored energy of 6 J, a repetition rate of discharge of 0.5 Hz and a gas flow velocity of 5.4 m/s. The aerosol nanoparticles were generated in the form of oxides and had various morphologies: agglomerates of primary particles of $TiO_2$ and $Al_2O_3$ or aggregates of primary particles of $Cu_2O$. The average size of the primary nanoparticles ranged between 6.3 and 7.4 nm for the three substances studied. The average size of the agglomerates and aggregates varied in a wide interval from 24.6 nm for $Cu_2O$ to 46.1 nm for $Al_2O_3$.

Fabrication of Si Inverted Pyramid Structures by Cu-Assisted Chemical Etching for Solar Cell Application (결정질 실리콘 태양전지의 효율개선을 위한 실리콘 역 피라미드 구조체 최적화)

  • Park, Jin Hyeong;Nam, Yoon-Ho;Yoo, Bongyoung;Lee, Jung-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.315-321
    • /
    • 2017
  • Antireflective pyramid arrays can be readily obtained via anisotropic etching in alkaline solution (KOH, NaOH), which is widely used in crystalline-Si (c-Si) solar cells. The periodic inverted pyramid arrays show even lower light reflectivity because of their superior light-trapping characteristics. Since this inverted pyramidal structures are mostly achieved using very complex techniques such as photolithograpy and laser processes requiring extra costs, here, we demonstrate the Cu-nanoparticle assisted chemical etching processes to make the inverted pyramidal arrays without the need of photolithography. We have mainly controlled the concentration of $Cu(NO_3)_2$, HF, $H_2O_2$ and temperature as well as time factors that affecting the reaction. Optimal inverted pyramid structure was obtained through reaction parameters control. The reflectance of inverted pyramid arrays showed < 10% over 400 to 1100 nm wavelength range while showing 15~20% in random pyramid arrays.

Synthesis and Characterization of CuCo2O4 Nanofiber Electrocatalyst for Oxygen Evolution Reaction (산소발생반응을 위한 CuCo2O4 나노섬유 전기화학 촉매 합성 및 특성 분석)

  • Won, Mi So;Jang, Myeong-Je;Lee, Kyu Hwan;Kim, Yang Do;Choi, Sung Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.539-548
    • /
    • 2016
  • The non-noble 1D nanofibers(NFs) prepared by electrospinning and calcination method were used as oxygen evolution reaction (OER) electrocatalyst for water electrolysis. The electrospinning process and rate of solution composition was optimized to prepare uniform and non-beaded PVP polymer electrospun NFs. The diameter and morphology of PVP NFs changed in accordance with the viscosity and ion conductivity. The clean metal precursor contained electrospun fibers were synthesized via the optimized electrospinning process and solution composition. The calcined $CuCo_2O_4$ NFs catalyst showed higher activity and long-term cycle stability for OER compared with other $Co_3O_4$, $NiCo_2O$ NF catalysts. Furthermore, the $CuCo_2O_4$ NFs maintained the OER activity during long-term cycle test compared with commercial $CuCo_2O_4$ nanoparticle catalyst due to unique physicochemical and electrochemical properties by1D nanostructure.

Bioassessment of Nanoparticle Toxicity based on Seed Germination and Germination Index of Various Seeds (다양한 씨앗의 발아 및 발아지수에 근거한 나노입자 생물학적 독성평가)

  • Gu, Bon Woo;Lee, Min Kyeung;Shi, Yu Tao;Kong, In Chul
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • This study investigated the effects of six metal oxide nanoparticles (NPs: CuO, NiO, TiO2, Fe2O3, Co3O4, ZnO) on seed germination and germination index (G.I) for five types of seeds: Brassica napus L., Malva verticillata L., Brassica olercea L., Brassica campestris L., Daucus carota L. NPs of CuO, ZnO, NiO show significant toxicity impacts on seed activities [CuO (6-27 mg/L), ZnO (16-86 mg/L), NiO (48-112 mg/L)], while no significant effects were observed at > 1000 mg/L of TiO2, Fe2O3, Co3O4. Tested five types of seed showed different sensitivities on seed germination and root activity, especially on NPs of CuO, ZnO, NiO. Malva verticillata L. seed was highly sensitive to toxic metal oxide NPs and showed following EC50s : CuO 5.5 mg/L, ZnO 16.4 mg/L, NiO 53.4 mg/L. Mostly following order of toxicity was observed, CuO > ZnO > NiO > Fe2O3 ≈ Co3O4 ≈ TiO2, where slightly different toxicity order was observed for carrot, showing CuO > NiO ≈ ZnO > Fe2O3 ≈ Co3O4 ≈ TiO2.

Microstructure Analysis of Y-Ba-Cu-O thin Films Grown on STO Substrates with Controlled ZnO Nanorods (ZnO 나노막대가 형성된 STO기판에 증착한 Y-Ba-Cu-O 박막의 미세구조 분석)

  • Oh, S.K.;Jang, G.E.;Tran, H.D.;Kang, B.W.;Kim, K.W.;Lee, C.Y.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.47-51
    • /
    • 2009
  • For many large-scale applications of high-temperature superconducting materials, large critical current density ($J_c$) in high applied magnetic fields are required. A number of methods have been reported to introduce artificial pinning centers in $YBa_2Cu_3O_{7-{\delta}}$ films for enhancement of their $J_c$. We studied the microstructures and characteristic of $YBa_2Cu_3O_{7-{\delta}}$ films fabricated on $SrTiO_3$ (100) substrates with ZnO nanorods as pinning centers. Au catalyst nanoparticles were synthesized on STO substrates with self assembled monolayer to control the number of ZnO nanorods. The density of Au nanoparticles is approximately $240{\sim}260{\mu}m^{-2}$ with diameters of $41{\sim}49nm$. ZnO nanorods were grown on STO by hot-walled PLD with Au nanoparticles. Typical size of ZnO nanorod was around 179 nm in diameter and $2{\sim}6{\mu}m$ in length respectively. YBCO films deposited directly on STO substrates show the c-axis orientation, while YBCO films with ZnO nanorods exhibit any mixed phases without any typical crystal orientation.

  • PDF