Microstructure Analysis of Y-Ba-Cu-O thin Films Grown on STO Substrates with Controlled ZnO Nanorods

ZnO 나노막대가 형성된 STO기판에 증착한 Y-Ba-Cu-O 박막의 미세구조 분석

  • Oh, S.K. (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Jang, G.E. (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Tran, H.D. (Department of Physics, Chungbuk National University) ;
  • Kang, B.W. (Department of Physics, Chungbuk National University) ;
  • Kim, K.W. (Korea Institute of Science and Technology) ;
  • Lee, C.Y. (Korea Research Institute of Standards and Science) ;
  • Hyun, O.B. (Korea Electric Power Research Institute)
  • Published : 2009.10.30

Abstract

For many large-scale applications of high-temperature superconducting materials, large critical current density ($J_c$) in high applied magnetic fields are required. A number of methods have been reported to introduce artificial pinning centers in $YBa_2Cu_3O_{7-{\delta}}$ films for enhancement of their $J_c$. We studied the microstructures and characteristic of $YBa_2Cu_3O_{7-{\delta}}$ films fabricated on $SrTiO_3$ (100) substrates with ZnO nanorods as pinning centers. Au catalyst nanoparticles were synthesized on STO substrates with self assembled monolayer to control the number of ZnO nanorods. The density of Au nanoparticles is approximately $240{\sim}260{\mu}m^{-2}$ with diameters of $41{\sim}49nm$. ZnO nanorods were grown on STO by hot-walled PLD with Au nanoparticles. Typical size of ZnO nanorod was around 179 nm in diameter and $2{\sim}6{\mu}m$ in length respectively. YBCO films deposited directly on STO substrates show the c-axis orientation, while YBCO films with ZnO nanorods exhibit any mixed phases without any typical crystal orientation.

Keywords

References

  1. Kang S, A. Goyal, J. Li, A.A. Gapud, P.M Martin, L. Heatherly, J.R. Thompson, D.K. Christen, F.A. List, M. paranthaman, D.F. Lee, Science, 311, 1911 (2006) https://doi.org/10.1126/science.1124872
  2. T. Haugan, P.N. Barnes, R. Wheeler, F. Meisenkothen and M. Sumption, Nature, 430, 867 (2004) https://doi.org/10.1038/nature02792
  3. X.M. Cui, B.W. Tao, Z. Tian, J. Xiong, X.F. Zhang and Y.R. Li, Supercond. Sci. Technol, 19, 844 (2006) https://doi.org/10.1088/0953-2048/19/8/027
  4. P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida and Horii, Supercond. Sci. Technol, 20, 616 (2007) https://doi.org/10.1088/0953-2048/20/7/006
  5. T. Haywood, S.H. Oh, A. Kebede, D.M. Pai, J. Sankar, D.K. Christen, S.J. Pennycook, D. Kumar, Phys. C, 468, 2313 (2008) https://doi.org/10.1016/j.physc.2008.07.008
  6. P. Mikheenko, A. Sarkar, V.-S. Dang, J.L. Tanner, J.S. Abell, A. Crisan, Phys. C, 469, 798 (2009) https://doi.org/10.1016/j.physc.2009.05.001
  7. D.W. Kim, S. Shin, Y. Kim, S.H. Chang, Y.J. Chang, M. Kim, H. Jeong, Solid State commun, 143, 140-143 (2007) https://doi.org/10.1016/j.ssc.2007.05.002
  8. W.L. Leong,P.S. Lee, S.G. Mhaisalkar, T.P. Chen, A. Dodabalapur, Appl. Phys. Lett, 90, 042906 (2007). https://doi.org/10.1063/1.2435598