• Title/Summary/Keyword: Cu nano powder

Search Result 118, Processing Time 0.027 seconds

Development of Nano-Tungsten-Copper Powder and PM Processes

  • Lee, Seong;Noh, Joon-Woong;Kwon, Young-Sam;Chung, Seong-Taek;Johnson, John L.;Park, Seong-Jin;German, Randall M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.377-378
    • /
    • 2006
  • Thermal management technology is a critical element in all new chip generations, caused by a power multiplication combined with a size reduction. A heat sink, mounted on a base plate, requires the use of special materials possessing both high thermal conductivity (TC) and a coefficient of thermal expansion (CTE) that matches semiconductor materials as well as certain packaging ceramics. In this study, nano tungsten coated copper powder has been developed with a wide range of compositions, 90W-10Cu to 10W-90Cu. Powder technologies were used to make samples to evaluate density, TC, and CTE. Measured TC lies among theoretical values predicted by several existing models.

  • PDF

The study of Synthesis of Dihydropyrimidine for Cardiotropic Drugs Using New Catalysts on the Basis of Nano Cu Oxides (신촉매 나노 구리산화물을 이용한 심혈관 의약품용 Dihydropyrimidine 제조 연구)

  • Uhm Y. R.;Lee M. K.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.441-446
    • /
    • 2005
  • The copper oxide nano powders were synthesized by levitational gas condensation (LGC) method, and were applied to catalyst to fabricate 3,4-dihydropyrimidin-2-(1H)-one. Processes of adsorption of Biginelli reaction reagents on the copper nanooxide surface $Cu_2O{\circ}CuO$ were studied by IR-spectroscopy. It was shown that benzaldehyde coordination, acetoacetic ether on the oxide surface is carried out with participation of carbonyl fragments, urea by N-H bonds which affects positively on the reagents reactivity.

A Study on the Tribological Characteristics of PTFE Composites-filled with Nano CuO Particles Under a Slow Sliding Speed and Low Load Condition (나노 CuO입자로 충진된 PTFE 나노복합소재의 저속 및 하중 조건에서의 트라이볼로지 특성에 관한 연구)

  • Minhaeng Cho;Junghwan Kim
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.111-117
    • /
    • 2023
  • This paper presents an experimental investigation of the tribological characteristics of PTFE composites filled with nano CuO particles under low sliding speed and load. All the specimens were prepared by sintering. Before sintering, the mixture of PTFE powder and CuO particles were mixed by a high-speed mixer using CuO volume fractions of 0.2 vol. % and 5 vol. %. Each mixture was sintered at 350 ℃ for 30 min on the steel disk. We conducted ball-on-disk sliding test an hour using a steel ball against PTFE composites, including pure PTFE. The load and sliding speed used was 2 N and 0.01 m/s, respectively. Adding nano CuO particles increases the friction coefficient because of the abrasiveness of hard nano CuO particles. The highest coefficient of frictions was obtained from 5 vol. % CuO. Conversely, the lowest wear of the composites was obtained from the 5 vol. % CuO nanocomposite. This study reveals that the addition of nano CuO particles can lower the wear of PTFE, despite an increase in the coefficient of friction. However, the coefficient friction is still moderate compared to other engineering polymers. In addition, the amount of CuO nano particles has to be optimized to reduce friction and wear at the same time.

Fabrication of Cu-Zn Alloy Nano Powders by Wire Explosion of Electrodeposited Wires (도금선재의 전기선폭발을 이용한 Cu-Zn 합금 나노분말 제조)

  • Kim, Won-Baek;Park, Je-Shin;Suh, Chang-Yeul;Lee, Jae-Chun;Oh, Yong-Jun;Mun, Jeong-Il
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.38-43
    • /
    • 2007
  • Cu-Zn alloy nano powders were fabricated by the electrical explosion of Zn-electroplated Cu wire along with commercial brass wire. The powders exploded from brass wire were composed mainly of ${\alpha},{\beta},\;and\;{\gamma}$ phases while those from electroplated wires contained additional Zn-rich phases as ${\varepsilon}$, and Zn. In case of Zn-elec-troplated Cu wire, the mixing time of the two components during explosion might not be long enough to solidify as the phases of lower Zn content. This along with the high vapor pressure of Zn appears to be the reason for the observed shift of explosion products towards the high-Zn phases in electroplated wire system.

Consolidation of Bulk Metallic Glass Composites

  • Lee, Jin-Kyu;Kim, Hwi-Jun;Kim, Taek-Soo;Shin, Seung-Yong;Bae, Jung-Chan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.848-849
    • /
    • 2006
  • Bulk metallic glass (BMG) composites combining a $Cu_{54}Ni_6Zr_{22}Ti_{18}$ matrix with brass powders or $Zr_{62}A_{l8}Ni_{13}Cu_{17}$ metallic glass powders were fabricated by spark plasma sintering. The brass powders and Zr-based metallic glass powders added for the enhancement of plasticity are well distributed homogeneously in the Cu-based metallic glass matrix after consolidation. The BMG composites show macroscopic plasticity after yielding, and the plastic strain increased to around 2% without a decrease in strength for the composite material containing 20 vol% Zr-based amorphous powders. The proper combination of strength and plasticity in the BMG composites was obtained by introducing a second phase in the metallic glass matrix.

  • PDF

Synthesis of Cu/Al2O3 Nanostructured Composite Powders for Electrode Application by Thermochemical Process (열화학적 방법에 의한 전극용 나노 Cu/Al2O3 복합분말 합성)

  • 이동원;배정현;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.337-343
    • /
    • 2003
  • Nanostructured Cu-$Al_2O_3$ composite powders were synthesized by thermochemical process. The synthesis procedures are 1) preparation of precursor powder by spray drying of solution made from water-soluble copper and aluminum nitrates, 2) air heat treatments to evaporate volatile components in the precursor powder and synthesis of nano-structured CuO + $Al_2O_3$, and 3) CuO reduction by hydrogen into pure Cu. The suggested procedures stimulated the formation of the gamma-$Al_2O_3$, and different alumina formation behaviors appeared with various heat treating temperatures. The mean particle size of the final Cu/$Al_2O_3$ composite powders produced was 20 nm, and the electrical conductivity and hardness in the hot-extruded bulk were competitive with Cu/$Al_2O_3$ composite by the conventional internal oxidation process.

Analysis of Densification Behavior of Nano Cu Powders during Cold Isostatic Pressing (나노 구리 분말의 냉간정수압 공정에 대한 치밀화 거동 해석)

  • 윤승채;김형섭;이창규
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.341-347
    • /
    • 2004
  • In the study, a hybrid constitutive model for densification of metallic powders was applied to cold isostatic pressing. The model is based on a pressure-dependent plasticity model for porous materials combined with a dislocation density-based viscoplastic constitutive model considering microstructural features such as grain size and inter-particle spacing. Comparison of experiment and calculated results of microscale and nanoscale Cu powders was made. This theoretical approach is useful for powder densification analysis of various powder sizes, deformation routes and powder processing methods.

Microstructure and Mechanical Properties of 3vol%CNT Reinforced Cu Matrix Composite Fabricated by a Powder in Sheath Rolling Method (분말시스압연법에 의해 제조된 3vol%CNT 강화 Cu기 복합재료의 미세조직 및 기계적 성질)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.149-154
    • /
    • 2020
  • A powder-in-sheath rolling method is applied to the fabrication of a carbon nano tube (CNT) reinforced copper composite. A copper tube with outer diameter of 30 mm and wall thickness of 2 mm is used as sheath material. A mixture of pure copper powder and CNTs with a volume content of 3 % is filled in a tube by tap filling and then processed to an 93.3 % reduction using multi-pass rolling after heating for 0.5 h at 400 ℃. The specimen is then sintered for 1h at 500 ℃. The relative density of the 3 vol%CNT/Cu composite fabricated using powder in sheath rolling is 98 %, while that of the Cu powder compact is 99 %. The microstructure is somewhat heterogeneous in width direction in the composite, but is relatively homogeneous in the Cu powder compact. The hardness distribution is also ununiform in the width direction for the composite. The average hardness of the composites is higher by 8Hv than that of Cu powder compact. The tensile strength of the composite is 280 MPa, which is 20 MPa higher than that of the Cu powder compact. It is concluded that the powder in sheath rolling method is an effective process for fabrication of sound CNT reinforced Cu matrix composites.