• 제목/요약/키워드: Cu diffusion

검색결과 443건 처리시간 0.029초

열확산 프로세스에 의한 초전도 벌크 합성 (Fabrication of the Bulk Superconductor by Thermal Diffusion Process)

  • 이상헌
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.461-465
    • /
    • 2021
  • A diffusion heat treatment process for YBa2Cu3O7-y bulk superconductor in a Gd2O3 powder was attempted. As a result of measuring the critical temperature of the superconducting bulk, there was no change in the superconducting transition temperature as the Gd particles diffused into the YBa2Cu3O7-y lattice, resulting in dense microstructure. As a result of measuring the critical current, the critical current density (Jc) of the superconducting bulk having treated by the Gd thermal diffusion treatment at 0 T increased to 3×104 A/cm2 at 0 T, which was higher than that of the superconducting bulk without thermal diffusion treatment. The surface magnetic force of the superconducting bulk with Gd thermal diffusion treatment was observed at the center of the superconducting bulk with the maximum trapped magnetic force (Hmax) of 1.51 kG. This result means that the Gd thermal diffusion treatment contributes to improving the critical current density Jc of YBa2Cu3O7-y, and it is believed that Gd particles migrating into the superconducting bulk through thermal diffusion either fill the surface pores of YBa2Cu3O7-y superconductors or act as a flux pinning center.

$CeO_2$첨가에 따른 YBCO고온초전도 후막의 특성 (Characterization Of YBCO HTSC-Thick film With addiction of $CeO_2$)

  • 윤기웅;임성훈;홍세은;강형곤;한용희;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.239-242
    • /
    • 2000
  • To fabricate YBa$_2$Cu$_3$O$_{x}$ thick film using diffusion process, $Y_2$BaCuO$_{5}$ and BaO+CuO as the material of substrate and the doping material were selected. CeO$_2$ in the doping material was mixed. As another doping material, YBa$_2$Cu$_3$O$_{x}$ was prepared for the comparison with BaO+CuO doping material. Each doping material was patterned on $Y_2$BaCuO$_{5}$ substrate by the screen printing method and then was annealed above peritectic reaction temperature of YBCO with a few step. It could be observed by X-ray diffraction patterns and SEM photographs that through the diffusion process of the $Y_2$BaCuO$_{5}$ and BaO+CuO, the YBa$_2$Cu$_3$O$_{x}$ phase was formed. With an amout of addition of CeO$_2$, the thickness of a formed YBa$_2$Cu$_3$O$_{x}$ decreased. x/ decreased.

  • PDF

Design of Copper Alloys Preventing Grain Boundary Precipitation of Copper Sulfide Particles for a Copper Disposal Canister

  • Minkyu Ahn;Jinwoo Park;Gyeongsik Yu;Jinhyuk Kim;Sangeun Kim;Dong-Keun Cho;Chansun Shin
    • 방사성폐기물학회지
    • /
    • 제21권1호
    • /
    • pp.1-8
    • /
    • 2023
  • The major concern in the deep geological disposal of spent nuclear fuels include sulfide-induced corrosion and stress corrosion cracking of copper canisters. Sulfur diffusion into copper canisters may induce copper embrittlement by causing Cu2S particle formation along grain boundaries; these sulfide particles can act as crack initiation sites and eventually cause embrittlement. To prevent the formation of Cu2S along grain boundaries and sulfur-induced copper embrittlement, copper alloys are designed in this study. Alloying elements that can act as chemical anchors to suppress sulfur diffusion and the formation of Cu2S along grain boundaries are investigated based on the understanding of the microscopic mechanism of sulfur diffusion and Cu2S precipitation along grain boundaries. Copper alloy ingots are experimentally manufactured to validate the alloying elements. Microstructural analysis using scanning electron microscopy with energy dispersive spectroscopy demonstrates that Cu2S particles are not formed at grain boundaries but randomly distributed within grains in all the vacuum arc-melted Cu alloys (Cu-Si, Cu-Ag, and Cu-Zr). Further studies will be conducted to evaluate the mechanical and corrosion properties of the developed Cu alloys.

Low-temperature Sintering Behavior of TiO2 Activated with CuO

  • Paek, Yeong-Kyeun;Shin, Chang-Keun;Oh, Kyung-Sik;Chung, Tai-Joo;Cho, Hyoung Jin
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.682-688
    • /
    • 2016
  • In $TiO_2$-CuO systems, low-temperature sinterability was investigated by a conventional sintering method. Sintering temperatures were set at under $950^{\circ}C$, at which the volume diffusion is inactive. The temperatures are less than the melting point of Ag ($961^{\circ}C$), which is often used as an internal conductor in low-temperature co-fired ceramic technology. To optimize the amount of CuO dopant, various dopant contents were added. The optimum level for enhanced densification was 2 wt% CuO. Excess dopants were segregated to the grain boundaries. The segregated dopants supplied a high diffusion path, by which grain boundary diffusion improved. At lower temperatures in the solid state region, grain boundary diffusion was the principal mass transport mechanism for densification. The enhanced grain boundary diffusion, therefore, improved densification. In this regard, the results of this study prove that the sintering mechanism was the same as that of activated sintering.

Investigation of Vanadium-based Thin Interlayer for Cu Diffusion Barrier

  • 한동석;박종완;문대용;박재형;문연건;김웅선;신새영
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.41.2-41.2
    • /
    • 2011
  • Recently, scaling down of ULSI (Ultra Large Scale Integration) circuit of CMOS (Complementary Metal Oxide Semiconductor) based electronic devices become much faster speed and smaller size than ever before. However, very narrow interconnect line width causes some drawbacks. For example, deposition of conformal and thin barrier is not easy moreover metallization process needs deposition of diffusion barrier and glue layer. Therefore, there is not enough space for copper filling process. In order to overcome these negative effects, simple process of copper metallization is required. In this research, Cu-V thin alloy film was formed by using RF magnetron sputter deposition system. Cu-V alloy film was deposited on the plane $SiO_2$/Si bi-layer substrate with smooth and uniform surface. Cu-V film thickness was about 50 nm. Cu-V layer was deposited at RT, 100, 150, 200, and $250^{\circ}C$. XRD, AFM, Hall measurement system, and XPS were used to analyze Cu-V thin film. For the barrier formation, Cu-V film was annealed at 200, 300, 400, 500, and $600^{\circ}C$ (1 hour). As a result, V-based thin interlayer between Cu-V film and $SiO_2$ dielectric layer was formed by itself with annealing. Thin interlayer was confirmed by TEM (Transmission Electron Microscope) analysis. Barrier thermal stability was tested with I-V (for measuring leakage current) and XRD analysis after 300, 400, 500, 600, and $700^{\circ}C$ (12 hour) annealing. With this research, over $500^{\circ}C$ annealed barrier has large leakage current. However V-based diffusion barrier annealed at $400^{\circ}C$ has good thermal stability. Thus, thermal stability of vanadium-based thin interlayer as diffusion barrier is good for copper interconnection.

  • PDF

PROPERTIES OF Mo COMPOUNDS AS A DIFFUSION BARRIER BETWEEN Cu AND Si PREPARED BY CO-SPUTTERING

  • Lee, Yong-Hyuk;Park, Jun-Yong;Bae, Jeong-Woon;Yeom, Geun-Young
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.433-439
    • /
    • 1999
  • In this study, the diffusion barrier properties of $1000\AA$ thick molybdenum compounds (Mox=1-5 Si) were investigated using sheet resistance measurements, X-ray diffractometry (XRD), and Rutherford back scattering spectrometry (RBS). Each barrier material was deposited by the de and rf magnetron co-sputtering of Mo and Si, respectively, and annealed at $500-700^{\circ}C$ for 30 min in vacuum. Each barrier material was failed at low temperatures due to Cu diffusion through grain boundaries and defects of barrier thin films or through the reaction of Cu with Si within Mo-barrier thin films. It was found that Mo rich thin films were less effective than Si rich films to Cu penetration activating Cu reaction with the substrate at a temperature higher than $500^{\circ}C$.

  • PDF

Cu(Mg) alloy의 표면과 계면에서 형성된 MgO의 확산방지능력 및 표면에 형성된 MgO의 전기적 특성 연구 (A study on Electrical and Diffusion Barrier Properties of MgO Formed on Surface as well as at the Interface Between Cu(Mg) Alloy and $SiO_2$)

  • 조흥렬;조범석;이재갑
    • 한국재료학회지
    • /
    • 제10권2호
    • /
    • pp.160-165
    • /
    • 2000
  • Sputter Cu(1-4.5at.%Mg) alloy를 100mTorr이하의 산소압력에서 온도를 증가시키며 열처리하였을 때 표연과 계면에서 형성된 MgO의 확산방지막 특성을 살펴보았다 먼저, $Cu(Mg)/SiO_2/Si$ 구조의 샘플을 열처리했을 때 계면에서는 $2Mg+SiO_2{\rightarrow}2MgO+Si$의 화학반응에 의해 MgO가 형성되는데 이 MgO충에 의해 Cu가 $SiO_2$로 확산되는 것이 현저하게 감소하였다. TiN/Si 기판 위에서도 Cu(Mg)과 TiN 계면에 MgO가 형성되어 Cu(4.5at.%Mg)의 경우 $800^{\circ}C$까지 Cu와 Si의 확산을 방지할 수 있었다. 표면에 형성된 MgO위에 Si을 증착하여 $Si/MgO(150\;{\AA})/Cu(Mg)/SiO_2/Si$구조로 만든 후 열처리했을 때 $150\;{\AA}$의 MgO는 $700^{\circ}C$까지 Si과 Cu의 확산을 방지할 수 있었다. 표면에 형성된 MgO($150\;{\AA}$)의 누설전류특성은 break down 5V, 누설전류 $10^{-7}A/\textrm{cm}^2$의 값을 나타냈다. 또한 $Si_3N_4/MgO$ 이중구조에서는 매우 낮은 누설전류밀도를 나타냈으며 MgO에 의해 $Si_3N_4$ 증착시 안정적인 계면이 형성됨을 확인하였다.

  • PDF

Formation of a MnSixOy barrier with Cu-Mn alloy film deposited using PEALD

  • Moon, Dae-Yong;Hwang, Chang-Mook;Park, Jong-Wan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.229-229
    • /
    • 2010
  • With the scaling down of ultra large integrated circuits (ULSI) to the sub-50 nm technology node, the need for an ultra-thin, continuous and conformal diffusion barrier and Cu seed layer is increasing. However, diffusion barrier and Cu seed layer formation with a physical vapor deposition (PVD) method has become difficult as the technology node is reduced to 30 nm and beyond. Recent work on self-forming barrier processes using PVD Cu alloys have attracted great attention due to the capability of conformal ultra-thin barrier formation using a simple technique. However, as in the case of the conventional barrier and Cu seed layer, PVD of the Cu alloy seed layer will eventually encounter the difficulty in conformal deposition in narrow line trenches and via holes. Atomic layer deposition (ALD) has been known for its good step coverage and precise thickness control, and is a candidate technique for the formation of a thin conformal barrier layer and Cu seed layer. Conformal Cu-Mn seed layers were deposited by plasma enhanced atomic layer deposition (PEALD) at low temperature ($120^{\circ}C$), and the Mn content in the Cu-Mn alloys were controlled form 0 to approximately 10 atomic percent with various Mn precursor feeding times. Resistivity of the Cu-Mn alloy films decreased by annealing due to out-diffusion of Mn atoms. Out-diffused Mn atoms were segregated to the surface of the film and interface between a Cu-Mn alloy and $SiO_2$, resulting in self-formed $MnO_x$ and $MnSi_xO_y$, respectively. No inter-diffusion was observed between Cu and $SiO_2$ after annealing at $500^{\circ}C$ for 12 h, indicating an excellent diffusion barrier property of the $MnSi_xO_y$. The adhesion between Cu and $SiO_2$ was enhanced by the formation of $MnSi_xO_y$. Continuous and conductive Cu-Mn seed layers were deposited with PEALD into 32 nm $SiO_2$ trench, enabling a low temperature process, and the trench was perfectly filled using electrochemical plating (ECD) under conventional conditions. Thus, it is the resultant self-forming barrier process with PEALD Cu-Mn alloy film as a seed layer for plating Cu that has further potential to meet the requirement of the smaller than 30 nm node.

  • PDF

Cu와 Si 사이에서 확산방지막으로 사용하기 위한 ZrN 층의 연구 (A study on ZrN layer as a diffusion barrier between Cu and Si)

  • 김창조;김좌연;윤의중;이재갑
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.21-24
    • /
    • 1998
  • The properties of ZrN layer deposited by Sputtering system have been investigated in the application of diffusion barrier layer to copper. ZrN layer exhibited a excellent barrier property up to $700^{\circ}$ and higher resistivity. If an excess $O_2$is protected during the process of ZrN deposition, ZrN layer will be possible to use a diffusion barrier layer to copper.

  • PDF