• Title/Summary/Keyword: Cu and Sn

Search Result 1,041, Processing Time 0.026 seconds

Synthesis of a new (Ta1-xSnx)Sr2EuCu2Oz superconductor

  • Kim, G.W.;Lee, H.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.33-35
    • /
    • 2014
  • We report here results of a study of superconductivity in the ($Ta_{1-x} Sn_x)Sr_2EuCu_2O_z$ system. We observe resistive superconducting transitions for the samples with x = 0.15-0.3, and the highest superconducting transition has been achieved for the sample with x = 0.2 which reveals onset $T_c$ of 43 K and zero-resistivity of 25 K. Thermoelectric power measurements indicate that Sn doping introduces holes into the system and thereby superconductivity can be achieved in the ($Ta_{1-x} Sn_x)Sr_2EuCu_2O_z$ system.

Board-Level Drop Analyses having the Flip Chips with Solder balls of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.5Cu (Sn-3.0Ag-0.5Cu 및 Sn-1.0Ag-0.5Cu 조성의 솔더 볼을 갖는 플립칩에서의 보드레벨 낙하 해석)

  • Kim, Seong-Keol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.193-201
    • /
    • 2011
  • Recently, mechanical reliabilities including a drop test have been a hot issue. In this paper, solder balls with new components which are Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.5Cu-0.05N are introduced, and board level drop test for them are conducted under JEDEC standard in which the board with 15 flip chips is dropped as 1,500g acceleration during 0.5ms. The drop simulations are studied by using a implicit method in the ANSYS LS-DYNA, and modal analysis is made. Through both analyses, the solder balls with new components are evaluated under the drop. It is found that the maximum stress of each chip is occurred between the solder ball and the PCB, and the highest value among the maximum stresses in the chips is occurred on the chip nearest to fixed holes on the board in the drop tests and simulations.

Effect of Tin Addition on the Melting Temperatures and Mechanical Properties of Al-Si-Cu Brazing Filler Metals (저온 브레이징용 Al-Si-Cu 합금의 Sn 첨가에 따른 융점 및 기계적 특성 변화 연구)

  • Kim, Min Sang;Park, Chun Woong;Byun, Jong Min;Kim, Young Do
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.376-381
    • /
    • 2016
  • For the development of a low-melting point filler metal for brazing aluminum alloy, we analyzed change of melting point and wettability with addition of Sn into Al-20Cu-10Si filler metal. DSC results showed that the addition of 5 wt% Sn into the Al-20Cu-10Si filler metal caused its liquidus temperature to decrease by about 30 oC. In the wettability test, spread area of melted Al-Cu-Si-Sn alloy is increased through the addition of Sn from 1 to 5 wt%. For the measuring of the mechanical properties of the joint region, Al 3003 plate is brazed by Al-20Cu-10Si-5Sn filler metal and the mechanical property is measured by tensile test. The results showed that the tensile strength of the joint region is higher than the tensile strength of Al 3003. Thus, failure occurred in the Al 3003 plate.

Effects of Ball Milling Condition on Sintering of Cu, Zn, Sn and Se Mixed Powders (Cu, Zn, Sn, Se 혼합 분말의 소결특성에 미치는 볼밀링 영향)

  • Ahn, Jong-Heon;Jung, Woon-Hwa;Jang, Yun-Jung;Lee, Seong-Heon;Kim, Kyoo-Ho
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.256-261
    • /
    • 2011
  • In order to make a $Cu_2ZnSnSe_4$ (CZTSe) sputtering target sintered for solar cell application, synthesis of CZTSe compound by solid state reaction of Cu, Zn, Sn and Se mixed powders and effects of ball milling condition on sinterability such as ball size, combination of ball size, ball milling time and sintering temperature, was investigated. As a result of this research, sintering at $500^{\circ}C$ after ball milling using mixed balls of 1 mm and 3 mm for 72 hours was the optimum condition to synthesis near stoichiometric composition of $Cu_2ZnSnSe_4$ and to prepare sintered pellet with high density relatively.

Reliability of Insert Mounted Components under Thermal Shock (열충격하에서의 삽입실장 부품의 신뢰성에 관한 연구)

  • Lee, Jong-Beom;No, Bo-In;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.202-204
    • /
    • 2006
  • The reliability of insert mounted components has been considered as their life time was getting increased. The spread of crack and the growth of IMC(intermetallic compound) were observed by SEM(scanning electron microscope) and EDS(energy dispersive spectroscope). The cracks in Sn-37wt%Pb under thermal shock test were found earlier than other solders(Sn-3.0wt%Ag-0.5wt%Cu and Sn-0.7wt%Cu-0.01wt%P). The IMC thickness was increased with increasing number of thermal shock cycles in the following order : Sn-0.7Cu-0.01P; Sn-3.0Ag-0.5Cu; Sn-37Pb

  • PDF

H2S Gas Sensing Properties of SnO2:CuO Thin Film Sensors Prepared by E-beam Evaporation

  • Sohn, Jae-Cheon;Kim, Sung-Eun;Kim, Zee-Won;Yu, Yun-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.135-139
    • /
    • 2009
  • $H_2S$ micro-gas sensors have been developed employing $SnO_2$:CuO composite thin films. The films were prepared by e-beam evaporation of Sn and Cu metals on silicon substrates, followed by oxidation at high temperatures. Results of various studies, such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) reveal that $SnO_2$ and CuO are mutually non-reactive. The CuO grains, which in turn reside in the inter-granular regions of $SnO_2$, inhibit grain growth of $SnO_2$ as well as forming a network of p-n junctions. The film showed more than a 90% relative resistance change when exposed to $H_2S$ gas at 1 ppm in air at an operating temperature of $350^{\circ}C$ and had a short response time of 8 sec.

Interfacial Reaction and Shear Energy of Sn-52In Solder on Ti/Cu/Au UBM with Variation of Au Thickness and Reflow Temperature (Ti/Cu/Au UBM의 Au 두께와 리플로우 온도에 따른 Sn-52In 솔더와의 계면반응 및 전단 에너지)

  • Choi Jae-Hoon;Jun Sung-Woo;Oh Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.87-93
    • /
    • 2005
  • Interfacial reactions between 48Sn-52In solder and $0.1{\mu}m$ Ti/3 ${\mu}m$ Cu/Au under bump metallurgies(UBM) with various Au thickness of $0.1{\~}0.7{\mu}m$ have been investigated after solder reflow at $150^{\circ}C,\;200^{\circ}C$, and $250^{\circ}C$ for 1 minute. Ball shear strength and shear energy of the Sn-52In solder bump on each UBM was also evaluated. With reflowing at $150^{\circ}C$ and $200^{\circ}C$, $Cu_6(Sn,In)_5$ and $AuIn_2$ intermetallic compounds were formed at UBW solder interface. However, UBM was consumed almost completely with reflowing at $250^{\circ}C$. While ball shear strength was not consistent with UBM/solder reactions, ball shear energy matched well with UBM/solder reactions.

  • PDF

The Supplement of Sn/Cu, Plating Solution Affects in Plating Skim Quality of the Plating Product (Sn/Cu 도금액의 보충이 도금제품의 도금피막특성에 미치는 영향)

  • Jeon, Taeg-Jong;Ko, Jun-Bin;Lee, Dong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.112-119
    • /
    • 2009
  • The purpose of this study is to evaluate the evaluation of process yield performed by using Sn & Cu treatment on the surface to optimize process condition for Lead-free solder application. The materials which are used for the New Surface Treatment study are Semi-Dulling plating for high speed Sn/Cu alloy of Soft Alloy GTC-33 Pb free known as "UEMURA Method" and plating substrate is alloy 42.Especially in lead-free plating process, it is important to control plating thickness and Copper composition than Sn/Pb plating. Evaluated and controlled plating thickness $12{\pm}3um$, Copper composition $2{\pm}1%$, plating particle and visual inspection. The optimization of these parameters and condition makes it makes possible to apply Sn/Cu Lead-free solder from Sn/Pb alloy.

Effect of Pt-Sn/Al2O3 catalysts mixed with metal oxides for propane dehydrogenation (프로판 탈수소 반응에 미치는 금속산화물과 혼합된 Pt-Sn/Al2O3 촉매의 영향)

  • Jung, Jae Won;Koh, Hyoung Lim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.401-410
    • /
    • 2016
  • The $Pt-Sn/Al_2O_3$ catalysts mixed with metal oxides for propane dehydrogenation were studied. $Cu-Mn/{\gamma}-Al_2O_3$, $Ni-Mn/{\gamma}-Al_2O_3$, $Cu/{\alpha}-Al_2O_3$ was prepared and mixed with $Pt-Sn/Al_2O_3$ to measure the activity for propane dehydrogenation. As standard sample, $Pt-Sn/Al_2O_3$ catalyst mixed with glassbead was adopted. In the case of catalytic activity test after non-reductive pretreatment of catalyst and metal oxide, $Pt-Sn/Al_2O_3$ mixed with $Cu-Mn/{\gamma}-Al_2O_3$ showed higher conversion of 15% and similar selectivity at $576.5^{\circ}C$, compared to conversion of 8% in standard sample. In the case of catalytic activity test after reductive pretreatment of catalyst and metal oxde, $Cu/{\alpha}-Al_2O_3$ showed higer yield than standard sample. But, increase of yield of most of samples after reductive pretreatment was not significant, so it was found that lattice oxygen of $Cu-Mn/{\gamma}-Al_2O_3$ is effective to propane dehydrogenation.

Characteristics of Sn-1.7Bi-0.7Cu-0.6In Lead-free Solder (Sn-1.7Bi-0.7Cu-0.6In 솔더의 특성 연구)

  • Park, Ji-Ho;Lee, Hee-Yul;Jhun, Ji-Heon;Cheon, Chu-Seon;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.43-48
    • /
    • 2008
  • Characteristics of Sn-1.7%Bi-0.7%Cu-0.6%In (hereafter, SBIC) lead-free solder was investigated in this study. The results from SBIC were compared to other lead-free solders such as Sn-3.5%Ag-0.7%Cu (hereafter, SAC), Sn-0.7%Cu (hereafter, SC), and lead-bearing Sn-37%Pb (hereafter, SP) alloy. Tensile properties of bulk solder, wettability, spreading index, bridge and dross were evaluated. As experimental results, tensile strength and elongation of SBIC was 62.5MPa and 21.5%, respectively. The tensile strength was comparable to that of SP solder. The wetting time of SBIC was 1.2 sec at $250^{\circ}C$, and its wetting properties including wetting force were as good as the SAC alloy. However, wettability of the SC was not so good as the SBIC and SAC. The spreading index of SBIC at $250^{\circ}C$ was 71 %, and it was similar level to those of SAC and SC solders. Bridging was not found for all solders of SBIC, SAC and SC in the range from 240 to $260^{\circ}C$. In dross test at $250^{\circ}C$ for an hour, the amount of dross produced from SBIC was about 57% compared to that from SAC.