• Title/Summary/Keyword: Cu Catalyst

Search Result 356, Processing Time 0.028 seconds

Electrophoretic Deposition for the Growth of Carbon nanofibers on Ni-Cu/C-fiber Textiles

  • Nam, Ki-Mok;Mees, Karina;Park, Ho-Seon;Willert-Porada, Monika;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2431-2437
    • /
    • 2014
  • In this study, Ni, Ni-Cu and Ni/Cu catalysts were deposited onto C-fiber textiles via the electrophoretic deposition method, and the growth characteristics of carbon nanofibers on the deposited catalyst/C-fiber textiles were investigated. The catalyst deposition onto C-fiber textiles was accomplished by immersing the C-fiber textiles into Ni or Ni-Cu mixed solutions, producing the substrate by post-deposition of Ni onto C-fiber textiles with pre-deposited Cu, and passing it through a gas mixture of $N_2$, $H_2$ and $C_2H_4$ at $700^{\circ}C$ to synthesize carbon nanofibers. For analysis of the characteristics of the synthesized carbon nanofibers and the deposition pattern of catalysts, SEM, EDS, BET, XRD, Raman and XPS analysis were conducted. It was found that the amount of catalyst deposited and the ratio of Ni deposition in the Ni-Cu mixed solution increased with an increasing voltage for electrophoretic deposition. In the case of post-deposition of Ni catalyst onto substrates with pre-deposited Cu, both bimetallic catalyst and carbon nanofibers with a high level of crystallizability were produced. Carbon nanofibers yielded with the catalyst prepared in Ni and Ni-Cu mixed solutions showed a Y-shaped morphology.

Reduction of nitrate in groundwater by hematite supported bimetallic catalyst

  • Hamid, Shanawar;Lee, Woojin
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.51-59
    • /
    • 2016
  • In this study, nitrate reduction of real groundwater sample by 2.2%Cu-1.6%Pd-hematite catalyst was evaluated at different nitrate concentrations, catalyst concentrations, and recycling. Results show that the nitrate reduction is improved by increasing the catalyst concentration. Specific nitrate removal by 2.2%Cu-1.6%Pd-hematite increased linearly with the increase of nitrate concentration showing that the catalyst possesses significantly higher reduction capacity. More than 95% nitrate reduction was observed over five recycles by 2.2%Cu-1.6%Pd-hematite with ~56% nitrogen selectivity in all recycling batches. The results from this study indicate that stable reduction of nitrate in groundwater can be achieved by 2.2%Cu-1.6%Pd-hematite over the wide range of initial nitrate inputs.

Production of Hydrogen and Carbon Nanotubes from Catalytic Decomposition of Methane over Ni:Cu/Alumina Modified Supported Catalysts

  • Hussain, Tajammul;Mazhar, Mohammed;Iqbal, Sarwat;Gul, Sheraz;Hussain, Muzammil;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1119-1126
    • /
    • 2007
  • Hydrogen gas and carbon nanotubes along with nanocarbon were produced from commercial natural gas using fixed bed catalyst reactor system. The maximum amount of carbon (491 g/g of catalyst) formation was achieved on 25% Ni, 3% Cu supported catalyst without formation of CO/CO2. Pure carbon nanotubes with length of 308 nm having balloon and horn type shapes were also formed at 673 K. Three sets of catalysts were prepared by varying the concentration of Ni in the first set, Cu concentration in the second set and doping with K in the third set to investigate the effect on stabilization of the catalyst and production of carbon nanotubes and hydrogen by copper and potassium doping. Particle size analysis revealed that most of the catalyst particles are in the range of 20-35 nm. All the catalysts were characterized using powder XRD, SEM/EDX, TPR, CHN, BET and CO-chemisorption. These studies indicate that surface geometry is modified electronically with the formation of different Ni, Cu and K phases, consequently, increasing the surface reactivity of the catalyst and in turn the Carbon nanotubes/H2 production. The addition of Cu and K enhances the catalyst dispersion with the increase in Ni loadings and maximum dispersion is achieved on 25% Ni: 3% Cu/Al catalyst. Clearly, the effect of particle size coupled with specific surface geometry on the production of hydrogen gas and carbon nanotubes prevails. Addition of K increases the catalyst stability with decrease in carbon formation, due to its interaction with Cu and Ni, masking Ni and Ni:Cu active sites.

Preparation of CuO-CeO2 mixed oxide catalyst by sol-gel method and its application to preferential oxidation of CO (졸-겔법에 의한 CuO-CeO2 복합 산화물 촉매의 제조 및 CO의 선택적 산화반응에 응용)

  • Hwang, Jae-Young;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.883-891
    • /
    • 2017
  • For the preferential oxidation of CO contained in the fuel of polymer electrolyte membrane fuel cell (PEMFC), CuO-$CeO_2$ mixed oxide catalysts were prepared by the sol-gel and co-precipitation methods to replace noble metal catalysts. In the catalyst preparation by the sol-gel method, Cu/Ce ratio and hydrolysis ratio were changed. The catalytic activity of the prepared catalysts was compared with the catalytic activity of the noble metal catalyst($Pt/{\gamma}-Al_2O_3$). Among the catalysts prepared with different Cu/Ce ratios, the catalyst whose Cu/Ce ratio was 4:16 showed the highest CO conversion (90%) and selectivity (60%) at $150^{\circ}C$. As the hydrolysis ratio was increased in the catalyst preparation, surface area increased, and catalytic activity also increased. The highest CO conversions with the CuO-$CeO_2$ mixed oxide catalyst prepared by the co-precipitation method and the noble metal catalyst (1wt% $Pt/{\gamma}-Al_2O_3$) were 82 and 81% at $150^{\circ}C$, respectively, whereas the highest CO conversion with the CuO-$CeO_2$ mixed oxide catalyst prepared by the sol-gel method was 90% at the same temperature. This indicates that the catalyst prepared by the sol-gel method shows higher catalytic activity than the catalysts prepared by the co-precipitation method and the noble metal catalyst. From the CO-TPD experiment, it was found that the catalyst having CO desorption peak at a lower temperature ($140^{\circ}C$) revealed higher catalytic activity.

Removal of NO Using CuO/3Al2O3 · 2SiO2 Catalyst Impregnated Ceramic Candle Filters (산화구리 촉매담지 세라믹 캔들필터를 이용한 NO 제거)

  • 홍민선;문수호;이재춘;이동섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.291-302
    • /
    • 2004
  • The CuO/$3AL_2O_3{\cdot}2SiO_2$ catalyst impregnated ceramic candle filters for nitrogen oxides removal were prepared by porous mullite($3AL_2O_3{\cdot}2SiO_2$) support and CuO catalyst deposited on this support to achieve uniformly dispersed CuO deposition, which are impregnated into the pores of available alumino-silicate ceramic candle filter. The CuO/3$AL_2O_3{\cdot}2SiO_2$ catalyst impregnated ceramic candle filters were characterized by XRD, BET, air permeability, pore size, SEM and catalytic tests in the reduction of NOx by NH$_3$. The observed effects of CuO/3$AL_2O_3{\cdot}2SiO_2$ impregnated ceramic candle filters in SCR reaction are as follows : (1) when the content of CuO catalyst increased further, activity of NO increased. (2) NO conversion at first increased with temperature and then decreased at high temperatures (above 40$0^{\circ}C$), possibly due to the occurrence of the ammonia oxidation reaction. (3) In pilot plant test for 3 months, NO conversion was greater than 90%.

$NH_3$ oxidation using Ag-Cu/$Al_2O_3$ composite catalyst at low temperature (Ag-Cu/$Al_2O_3$ 복합촉매를 이용한 저온에서의 $NH_3$ 산화)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.313-319
    • /
    • 2014
  • This study was performed to obtain high conversion efficiency of $NH_3$ and minimize generation of nitrogen oxides using metal-supported catalyst with Ag : Cu ratio. Through structural analysis of the prepared catalyst with Ag : Cu ratio ((10-x)Ag-xCu ($0{\leq}x{\leq}6$)), it was confirmed that the specific surface area was decrease with increasing metal content. A prepared catalysts showed Type II adsorption isotherms regardless of the ratio Ag : Cu of metal content, and crystalline phase of $Ag_2O$, CuO and $CuAl_2O$ was observed by XRD analysis. In the low temperature($150{\sim}200^{\circ}C$), a conversion efficiency of AC_10 recorded the highest(98%), whereas AC_5 (Ag : Cu = 5 : 5) also showed good conversion efficiency(93.8%). However, in the high temperature range, the amounts of by-products(NO, $NO_2$) formed with AC_5 was lower than that of AC_10. From these results, It is concluded that AC_5 is more environmentally and economically suitable.

An important factor for the water gas shift reaction activity of Cu-loaded cubic Ce0.8Zr0.2O2 catalysts

  • Jang, Won-Jun;Roh, Hyun-Seog;Jeong, Dae-Woon
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.339-344
    • /
    • 2018
  • The Cu loading of a cubic $Ce_{0.8}Zr_{0.2}O_2$-supported Cu catalyst was optimized for a single-stage water gas shift (WGS) reaction. The catalyst was prepared by a co-precipitation method, and the WGS reaction was performed at a gas hourly space velocity of $150,494h^{-1}$. The results revealed that an 80 wt% $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalyst exhibits excellent catalytic performance and 100% $CO_2$ selectivity ($X_{CO}=27%$ at $240^{\circ}C$ for 100 h). The high activity of 80 wt% $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalyst is attributed to the presence of abundant surface Cu atoms and the low activation energy of the resultant process.

Toluene Oxidation over Spent Zeolite Catalyst (폐제올라이트 촉매를 이용한 톨루엔 산화반응)

  • Song, Min-Young;Park, Young-Kwon;Park, Sung-Hoon;Jeon, Jong-Ki;Ko, Young-Soo;Jung, Kyeong-Youl;Yim, Jin-Heong;Sohn, Jung-Min
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.271-274
    • /
    • 2008
  • In this work, the feasibility of spent zeolite catalyst for reusing as a support was investigated in catalytic odor removal reaction. As a model reaction for odor removal, toluene was selected as a reactant. 10wt% Cu was impregnated on spent HZSM-5 catalyst and spent FCC catalyst. The catalytic activity of the spent HZSM-S was higher than that of spent FCC catalyst in toluene oxidation. This was due to the fact that the surface area of spent HZSM-S was higher than that of spent FCC catalyst. These results may suggest that spent HZSM-S can be reused as a cheap catalyst for toluene removal.

  • PDF

Durability of Co-P-B/Cu Catalyst for NaBH4 Hydrolysis Reaction (NaBH4 가수분해용 Co-P-B/Cu 촉매의 내구성)

  • Hwang, Byungchan;Jo, Ara;Sin, Sukjae;Choi, Daeki;Nam, Sukwoo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.627-631
    • /
    • 2012
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFCs). The durability of Co-P-B/Cu catalyst for sodium borohydride hydrolysis reaction was studied. The effect of reaction temperature, $NaBH_4$ concentration, NaOH concentration and calcination temperature of catalyst on the durability of Co-P-B/Cu catalyst were measured. The gel formed during hydrolysis reaction affected the durability of catalyst (loss of catalyst). Formation of gel increased the loss of the catalyst. When $NaBH_4$ concentration was high and reaction temperature was higher than $60^{\circ}C$, loss of catalyst was low because gel was not formed. But under the temperature of $40^{\circ}C$, loss of catalyst increased due to gel formation When $NaBH_4$ concentration was 40 weight % and the reaction temperature was $40^{\circ}C$, the loss of catalyst increased as the NaOH concentration increased. As the calcination temperature of catalyst decreased, the loss of catalyst decreased and the activity of catalyst decreased. Calcination of the catalyst at high temperature enhanced the durability of catalyst but diminished the activity of catalyst.

Effect of Promoter on the Decomposition of Eco-Frendly Liquid Monopropellant on Cu/hexaaluminate Pellet Catalyst (Cu/hexaaluminate 펠렛 촉매를 이용한 친환경 액체 추진제 분해 반응에 미치는 조촉매의 영향)

  • Kim, Munjeong;Kim, Wooram;Jo, Young Min;Jeon, Jong Ki
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.196-203
    • /
    • 2020
  • In this study, a Cu/hexaaluminate catalyst was prepared by a co-precipitation method, and then a binder was added to form a pellet. A catalyst in which Ni and Ru promoters were added to a Cu/hexaaluminate pellet catalyst was prepared. This study focused on examining the effect of the addition of Ni and Ru promoters on the properties of Cu/hexaaluminate catalysts and the decomposition reaction of ADN-based liquid monopropellants. Cu/hexaaluminate catalysts had few micropores and well-developed mesopores. When Ru was added as a promoter to the Cu/hexaaluminate pellet catalyst, the pore volume and pore size increased significantly. In the thermal decomposition reaction of ADN-based liquid monopropellant, the decomposition onset temperature was 170.2 ℃. Meanwhile, the decomposition onset temperature was significantly reduced to 93.5 ℃ when the Cu/hexaaluminate pellet catalyst was employed. When 1% or 3% of Ru were added as a promoter, the decomposition onset temperatures of ADN-based liquid monopropellant were lowered to 91.0 ℃ and 83.3 ℃, respectively. This means that the Ru promoter is effective in lowering the decomposition onset temperature of the ADN-based liquid monopropellant because the Ru metal has excellent activity in the decomposition reaction of ADN-based liquid monopropellant, simultaneously contributing to the increase of the pore volume and pore size. After the thermal treatment at 1,200 ℃ and decomposition of ADN-based liquid monopropellant were repeatedly performed, it was confirmed that the addition of Ru could enhance the heat resistance of the Cu/hexaaluminate pellet catalyst.