Browse > Article
http://dx.doi.org/10.12925/jkocs.2014.31.2.313

$NH_3$ oxidation using Ag-Cu/$Al_2O_3$ composite catalyst at low temperature  

Lim, Yun-Hui (Technology Institute, Anytech Co., Ltd)
Lee, Ju-Yeol (Technology Institute, Anytech Co., Ltd)
Park, Byung-Hyun (Technology Institute, Anytech Co., Ltd)
Publication Information
Journal of the Korean Applied Science and Technology / v.31, no.2, 2014 , pp. 313-319 More about this Journal
Abstract
This study was performed to obtain high conversion efficiency of $NH_3$ and minimize generation of nitrogen oxides using metal-supported catalyst with Ag : Cu ratio. Through structural analysis of the prepared catalyst with Ag : Cu ratio ((10-x)Ag-xCu ($0{\leq}x{\leq}6$)), it was confirmed that the specific surface area was decrease with increasing metal content. A prepared catalysts showed Type II adsorption isotherms regardless of the ratio Ag : Cu of metal content, and crystalline phase of $Ag_2O$, CuO and $CuAl_2O$ was observed by XRD analysis. In the low temperature($150{\sim}200^{\circ}C$), a conversion efficiency of AC_10 recorded the highest(98%), whereas AC_5 (Ag : Cu = 5 : 5) also showed good conversion efficiency(93.8%). However, in the high temperature range, the amounts of by-products(NO, $NO_2$) formed with AC_5 was lower than that of AC_10. From these results, It is concluded that AC_5 is more environmentally and economically suitable.
Keywords
Selective catalyst oxidation; $NH_3$; Ag/Cu/$Al_2O_3$ catalyst; Low temperature;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Amblard, R. Burch, and B.W.L. A Study of the Mechanism of Selective Conversion of Ammonia to Nitrogen on Ni/$\gamma$-$Al_{2}O_{3}$ under Strongly Oxidizing Conditions, Catal. Today, 59, 365-371 (2000).   DOI   ScienceOn
2 J.J. Ostermaier, J.R. Katzer, and W.H. Manogue, Platinum Catalyst Deactivation in Low-temperature Ammonia Oxidation Reactions: I. Oxidation of Ammonia by Molecular Oxygen., J. Catal. 41, 277-292 (1976).   DOI   ScienceOn
3 Kocat INC., Soonchunhyang University Industry Academy Cooperation Foundation, 1007855230000 (2007).
4 R. Burch and B.W.L. Southward, A Novel Application of Trapping Catalysts for the Selective Low-temperature Oxidation of $NH_{3}$ to $N_{2}$ in Simulated Biogas., J. Catal. 195, 217-226 (2000).   DOI   ScienceOn
5 L. Gang, J. van Grondelle, B.G. Anderson, and R.A. van Santen, Selective Low temperature $NH_{3}$ Oxidation to $N_{2}$ on Copper-based Catalysts, J. Catal. 186, 100-109 (1999).   DOI   ScienceOn
6 M. Amblard, R. Burch, and B.W.L. Southward, The Selective Conversion of Ammonia to Nitrogen on Metal Oxide Catalysts under Strongly Oxidising Conditions, Appl. Catal. B, 22, 159-166 (1999).   DOI   ScienceOn
7 J.J.P. Biermann, Ph. D. Thesis, University of Twente, (1990).
8 M. de Boer, H.M. Huisman, R.J.M. Mos, R.G. Leliveld, A.J. Dillen, and J.W. Geus, Selective Oxidation of Ammonia to Nitrogen over $SiO_{2}$-supported $MoO_{3}$ Catalysts, Catal. Today, 17, 189-200 (1993).   DOI   ScienceOn
9 F.J.J.G. Janssen and F.M.G. van den Kerkhof, Selective Catalytic Removal of NO from Stationary Sources, KEMA Sci. & Techno. Reports 3, 71-85 (1985).
10 J.P. Chen and R.T. Yang, Role of $WO_{3}$ in mixed $V_{2}O_{5}-WO_{3}/TiO_{2}$ Catalysts for Selective Catalytic Reduction of Nitric Oxide with Ammonia, Appl. Catal. 80, 135-148 (1992).   DOI   ScienceOn
11 S.J. Gregg and K.S.W. Sing, Adsorption Surface area and Porosity, 2nd edi., Academic Press, Inc., London (1982).
12 W.K. Lee, K.H. Kim, S.K. Ryu, and B.S. Park, Decomposition of NO by Cu-impregnated ACFs, Korean Chem. Eng. Res., 42(2), 196-201 (2004).
13 A. Wollner, F. Lange, H. Schmelz, and H, Knozinger, Characterization of mixed Copper-manganese Oxides Supported on Titania Catalysts for Selective Oxidation of Ammonia., Appl. Catal. A, 94, 181-203 (1993).   DOI   ScienceOn
14 N.N. Sazonova, A.V. Simakov, T.A. Nikoro, G.B. Barannik, V.F. Lyakhova, V.I. Kheivot, Z.R. Ismagilov and H. Veringa, Selective Catalytic Oxidation of Ammonia to Nitrogen, React. Kinet. Catal. Lett., 57, 71-79 (1996).   DOI
15 M. de Boer, A.J. van Dillen, D.C. Koningsberger, J.W. Geus, Remarkable Spreading behavior of Molybdena on Silica Catalysts. An in situ EXAFS-Raman Study, Catal. Lett., 11, 227-240 (1991).   DOI
16 G. Tuenter, W.F. van Leeuwen, and L.J.M. Snepvangers, Kinetics and Mechanism of the NOx Reduction with $NH_{3}$ on $V_{2}O_{5}-WO_{3}/TiO_{2}$ Catalyst, Ind. Eng. Chem. Prod. Res. Dev. 25, 633-636 (1986).   DOI
17 E.T.C. Vogt, A. Boot, A.J. van Dillen, J.W. Geus, F.J.J.G. Janssen, and F.M.G. van den Kerkhof, Preparation and Performance of a Silica-supported $V_{2}O_{5}$ on $TiO_{2}$ Catalyst for the Selective Reduction of NO with $NH_{3}$, J. Catal. 114, 313-320 (1988).   DOI   ScienceOn
18 J.J.P. Biermann, F.J.J.G. Janssen, M. De Boer, A.J. Van Dillen, J.W. Geus, and E.T.C. Vogt, Molybdena on Silica Catalysts: Selective Catalytic Oxidation of Ammonia to Nitrogen over $MoO_{3}$ on $SiO_{2}$ Catalysts, J. Mol. Catal. 60, 229-238 (1990).   DOI   ScienceOn
19 G. Lu, B.G. Anderson, J. van Grondelle, R.A. van Santen, Low Temperature Selective Oxidation of Ammonia to Nitrogen on Silver-based Catalysts., Appl. Catal. B, 40, 101-110 (2003).   DOI   ScienceOn
20 N.I. Il'chenko, G.I. Golodets, and I.M. Avilova, Kinet. Catal. 16, 1264 (1975).
21 N.I. Il'chenko, Catalytic oxidation of ammonia, Russ. Chem. Rev. 45, 1119 (1976).   DOI
22 G. Lu, B.G. Anderson, J. van Grondelle, R.A. van Santen, W.J.H. Van Gennip, J.W. Niemantsverdriet, P.J. Kooyman, A. Knoester and H.H. Brongersma, Alumina-supported Cu-Ag Catalysts for Ammonia Oxidation to Nitrogen at Low Temperature, J. Catal. 206, 60-70 (2002).   DOI   ScienceOn
23 Y.H. Lim, J.Y. Lee, and B.H. Park, Catalytic Oxidation of Ammonia over Metal Supported on Alumina at Low Temperature, J. of Korean Oil Chemists' Soc., 30(3), 371-379 (2013).   DOI   ScienceOn
24 K. Kutics and M, Suzuki, Adsorption of Organics on Surface Modified Activated Carbon Fibers, The 2nd Korea-Japan Symposium on Separation Technology, June 1-2, Seoul, 395-398 (1990).