Browse > Article
http://dx.doi.org/10.5012/bkcs.2007.28.7.1119

Production of Hydrogen and Carbon Nanotubes from Catalytic Decomposition of Methane over Ni:Cu/Alumina Modified Supported Catalysts  

Hussain, Tajammul (Department of Chemistry, Quaid-i-Azam University)
Mazhar, Mohammed (Department of Chemistry, Quaid-i-Azam University)
Iqbal, Sarwat (Department of Chemistry, Quaid-i-Azam University)
Gul, Sheraz (Department of Chemistry, Quaid-i-Azam University)
Hussain, Muzammil (Department of Chemistry, Quaid-i-Azam University)
Larachi, Faical (Department of Chemical Engineering, University of Laval)
Publication Information
Abstract
Hydrogen gas and carbon nanotubes along with nanocarbon were produced from commercial natural gas using fixed bed catalyst reactor system. The maximum amount of carbon (491 g/g of catalyst) formation was achieved on 25% Ni, 3% Cu supported catalyst without formation of CO/CO2. Pure carbon nanotubes with length of 308 nm having balloon and horn type shapes were also formed at 673 K. Three sets of catalysts were prepared by varying the concentration of Ni in the first set, Cu concentration in the second set and doping with K in the third set to investigate the effect on stabilization of the catalyst and production of carbon nanotubes and hydrogen by copper and potassium doping. Particle size analysis revealed that most of the catalyst particles are in the range of 20-35 nm. All the catalysts were characterized using powder XRD, SEM/EDX, TPR, CHN, BET and CO-chemisorption. These studies indicate that surface geometry is modified electronically with the formation of different Ni, Cu and K phases, consequently, increasing the surface reactivity of the catalyst and in turn the Carbon nanotubes/H2 production. The addition of Cu and K enhances the catalyst dispersion with the increase in Ni loadings and maximum dispersion is achieved on 25% Ni: 3% Cu/Al catalyst. Clearly, the effect of particle size coupled with specific surface geometry on the production of hydrogen gas and carbon nanotubes prevails. Addition of K increases the catalyst stability with decrease in carbon formation, due to its interaction with Cu and Ni, masking Ni and Ni:Cu active sites.
Keywords
$CH_4$ decomposition; Ni:Cu/Al catalysts; Carbon nanotubes; Hydrogen;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Otsuka, K.; Kobayashi, S.;Takenaka, S. Appl. Catal. A 2000, 190, 261   DOI   ScienceOn
2 Shiakhutdinov, S. K.;Avdeeva, L. B.;Goncharova, O.V.; Kochubey, D. I.;Novgorodov, B. N.;Plyasova, L. M. Appl. Catal. A 1995, 126, 125   DOI   ScienceOn
3 Ermakova, M. A.;Ermakov, D. Yu.; Kuvshinov, G. G.; Plyasova, L. M. J. Catal. 1999, 187, 77   DOI   ScienceOn
4 Hughes. T. V.; Chamber. C R. 1889. US Patent 405480
5 Carbon Fibers Filaments Composites; Figueiredo, J. L.; Bernardo, C. A.; Baker, R. T. K., Eds.; Kluwer Academic: Dordrecht/Norwell, MA, 1990
6 Ishihara, T.;Miyashita, H.;Iseda, H.;Takita, Y. Chem. Lett. 1995, 93, 11
7 Chai, S.; Zein, S. H. S.; Mohamed, A. R. Chem. Phys. Lett. 2006, 426, 345
8 Inoue, M.; Asai, K.; Nagayasu, Y.; Takane, K.; Yagasaki, E. Adv. Sci. Tech. 2006, 48, 67   DOI
9 Takenaka, S.; Ogihara, H.; Yamanaka, I.; Otuska, K. Appl. Catal. A 2001, 217, 101   DOI   ScienceOn
10 Avdeeva, L. B.;Goncharova, O. V.; Kochubey, D. I.; Zaikovskii, V. I.; Plyasova, L. N.; Novgorodov, B. N.;Shaikhutdinov, Sh. K. Appl. Catla. A 1996, 141, 117   DOI   ScienceOn
11 Shaikhutdinov, Sh. K.; Avdeeva, L. B.; Novgorodov, B. N.; Zaikovskii, V. I.; Kochubey, D. I. Catal. Lett. 1997, 47, 35   DOI
12 Ermakova, M. A.;Ermakov, D. Yu; Kushinov, G. C.;Plyasova, L. M. J. Catal. 1999, 187, 77   DOI   ScienceOn
13 Reshetenko, T. V.; Avdeeva, L. B.; Ismagilov, Z. R.; Chuvilin, A. L.;Ushakov, V. A. Appl. Catal. A 2003, 247, 51   DOI   ScienceOn
14 Takenaka, S.; Kobayashi, S.; Ogihara, H.; Ostuka, K. J. Catal. 2003, 217, 79
15 Li, J.; Lu, G.; Li, K.; Wang, W. J. Mol. Catal. A-Chem. 2004, 221, 105   DOI   ScienceOn
16 Zhao, N. Q.; He, C. N.; Ding, J.; Zou, T. C.; Qiao, Z. J.; Shi, C. S.; Du, X. W.; Li, J. J.; Li, Y. D. J. Alloy. Compd. 2007, 428, 79   DOI   ScienceOn
17 Wang, C.; Gau, G.; Gau, S.; Tang, C.; Bi, J. Catal. Lett. 2005, 101, 241   DOI
18 Rostrup-Nielsen, J. R.; Christiansen, L. Appl. Catal. A: Gen. 1995, 126, 381
19 Rostrup-Nielsen, J. R.; Bak Hansen, J. H.; Aparicio, L. M. J. Jpn. Petrol. Inst. 1997, 40, 366
20 Suelves, I.;Lazaro, M. J.; Moliner, R.; Echegoyen, Y.; Palacios, J. M. Catal. Today 2006, 116, 271   DOI   ScienceOn
21 Rahman, M. S.; Croiset, E.; Hudgins, R. R. Topics in Catalysis 2006, 37, 137   DOI
22 Cullity, B. D. Elements of X- ray Diffraction, 2nd ed.; Addison-Wesley: Menlo Park, CA, 1978
23 Robertson, S. D.; Menicol, B. D.; De Bass, J. H.; Kloet, S. C.; Jenkins, J. W. J. Catal. 1975, 37, 424   DOI   ScienceOn
24 Rostrup-Nielson, J. R. In Steam Reforming Catalysts: An Investigation of Catalyst for Turbular Steam Rreforming of Hydrocarbons; Teknisk Forlag A/S: Copenhagen, 1975
25 Toebes, M. L.; Bitter, J. H.; Van Dillen, A. J.; De Jong, K. P. Catal. Today 2002, 76, 33   DOI   ScienceOn
26 Hernadi, K.; Konya, Z.; Siska, A.; Kiss, J.; Oszko, A.; Nagy, J. B.; Kirivsi, I. Mater. Chem. Phys. 2003, 77, 536   DOI   ScienceOn
27 Park, C.; Keane, M. A. J. Catal. 2004, 221, 386   DOI   ScienceOn
28 Otsuka, K.; Ogihara, H.; Takenaka, S. Carbon 2003, 41, 223   DOI   ScienceOn
29 Ermakova, D. Yu.; Ermakov, G. G.; Plyasova, L. M. J. Catal. 1999, 187, 77   DOI   ScienceOn
30 De Chen; Christensen, K. O.; Fernandez, E. O.; Yu, Z.; Totdal, B.; Latorre, N.; Monzon, A.; Holmen, A. J. Catal. 2005, 229, 82   DOI   ScienceOn
31 Reshetenko, T. V.; Avdeeva, L. B.; Ismagilov, Z. R.; Chuvilin, A. L.; Fenelonov, V. B. Catal. Today 2005, 102-103, 115
32 Corrie, L. C.; Jennifer, S.; Kenneth, J. K. Langumir 2002, 18, 1352   DOI   ScienceOn
33 Liang, J.; Li, Y. Chem. Lett. 2003, 32, 1126   DOI   ScienceOn
34 De Jong, K. P.; Gues, J. W. Catal. Rev. Sci. Eng. 2000, 42, 481   DOI   ScienceOn
35 Chambers, A.; Nemes, T.; Rodriguez, N. M.; Baker, R. T. K. J. Phys. Chem. B 1998, 102, 2251   DOI   ScienceOn
36 De Jong, K. P.; Geus, J. W. Catal. Rev. Sci. Eng. 2000, 42, 481   DOI   ScienceOn
37 Liang, Z.; Zhu, Y.; Hu, X. J. Phys. Chem. B 2004, 108, 3488   DOI   ScienceOn
38 Balandin, A. A. In Advances in Catalysis; Eley, D. D.; Frankenburg, W. G.; Komarewsky, V. I.; Weisz, P. B., Eds.; Academic Press: Orlando, FL, 1958; Vol. 10, p. 96
39 Kobozev, N. I. Acta Physicochim 1938, 9, 805
40 Dowden, D. A. J. Chem. Soc. London 1950, 242
41 Simon, D.; Bigot, E. Surf. Sci. 1994, 306, 459   DOI   ScienceOn
42 Lang, N. D.; Holloway, S.; Norskov, J. K. Surf. Sci. 1987, 236, 403
43 Bengaard, H. S.; Alstrup, Ib.; Chorkendorff, Ib.; Ullmann, S.; Rostrup-Nielsen, J. R.; Norskov, J. K. J. Catal. 1999, 187, 238
44 Ceyer, S. T.;Yang, Q. Y.; Leem, M. B.; Beckelerie, J. D.; Johnson, A. D. Stud. Surf. Sci. Catal. 1987, 36, 51
45 Rostrup-Nielsen, J. R. J. Catal. 1987, 33, 173
46 Rostrup-Nielsen, J. R. J. Catal. 1974, 31, 184