DOI QR코드

DOI QR Code

Effect of Promoter on the Decomposition of Eco-Frendly Liquid Monopropellant on Cu/hexaaluminate Pellet Catalyst

Cu/hexaaluminate 펠렛 촉매를 이용한 친환경 액체 추진제 분해 반응에 미치는 조촉매의 영향

  • Kim, Munjeong (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Wooram (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Jo, Young Min (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Jeon, Jong Ki (Department of Chemical Engineering, Kongju National University)
  • Received : 2020.06.05
  • Accepted : 2020.06.20
  • Published : 2020.09.30

Abstract

In this study, a Cu/hexaaluminate catalyst was prepared by a co-precipitation method, and then a binder was added to form a pellet. A catalyst in which Ni and Ru promoters were added to a Cu/hexaaluminate pellet catalyst was prepared. This study focused on examining the effect of the addition of Ni and Ru promoters on the properties of Cu/hexaaluminate catalysts and the decomposition reaction of ADN-based liquid monopropellants. Cu/hexaaluminate catalysts had few micropores and well-developed mesopores. When Ru was added as a promoter to the Cu/hexaaluminate pellet catalyst, the pore volume and pore size increased significantly. In the thermal decomposition reaction of ADN-based liquid monopropellant, the decomposition onset temperature was 170.2 ℃. Meanwhile, the decomposition onset temperature was significantly reduced to 93.5 ℃ when the Cu/hexaaluminate pellet catalyst was employed. When 1% or 3% of Ru were added as a promoter, the decomposition onset temperatures of ADN-based liquid monopropellant were lowered to 91.0 ℃ and 83.3 ℃, respectively. This means that the Ru promoter is effective in lowering the decomposition onset temperature of the ADN-based liquid monopropellant because the Ru metal has excellent activity in the decomposition reaction of ADN-based liquid monopropellant, simultaneously contributing to the increase of the pore volume and pore size. After the thermal treatment at 1,200 ℃ and decomposition of ADN-based liquid monopropellant were repeatedly performed, it was confirmed that the addition of Ru could enhance the heat resistance of the Cu/hexaaluminate pellet catalyst.

본 연구에서는 Cu/hexaaluminate를 공침법으로 제조한 후, 바인더를 첨가하여 펠렛 형태로 성형하였다. 니켈 및 루테늄 조촉매의 첨가가 Cu/hexaaluminate pellet 촉매의 특성과 ADN계 액체 단일 추진제의 분해 반응에 미치는 영향을 고찰하는데 초점을 두었다. Cu/hexaaluminate pellet 촉매는 미세 기공은 거의 없으며 메조 기공이 발달한 촉매이다. Cu/hexaaluminate pellet 촉매에 루테늄을 조촉매로 첨가하면 기공의 부피와 기공의 크기는 큰 폭으로 증가하였다. ADN 기반 액체 단일 추진제의 열분해 반응에서 분해 개시 온도는 170.2 ℃이다. Cu/hexaaluminate pellet 촉매를 사용한 경우, 분해 개시 온도는 93.5 ℃로 크게 감소한 것을 확인하였다. 루테늄 1% 및 3%를 조촉매로 첨가했을 때, ADN 기반 액체 단일 추진제 분해 개시 온도가 각각 91.0 ℃와 83.3 ℃로 낮아졌다. 즉, 루테늄 조촉매가 ADN 기반 액체 단일 추진제의 분해 개시 온도를 낮추는데 효과가 있다는 것을 의미한다. 이는 루테늄 금속이 ADN 기반 액체 단일 추진제 분해 반응에 활성이 뛰어나면서, 동시에 기공 부피와 기공의 크기를 증가시키는데 기여하였기 때문이다. Cu/hexaaluminate pellet 촉매의 내열성에 루테늄이 미치는 영향을 확인하기 위하여 1200 ℃에서의 열처리와 ADN 기반 액체 단일 추진제 분해 실험을 반복적으로 수행한 결과, 루테늄의 첨가 비율이 증가함에 따라 내열성이 증가하는 것을 확인할 수 있었다.

Keywords

References

  1. Halliwell, B., Clement, M. V., and Long, L. H., "Hydrogen Peroxide in The Human Body," FEBS Letters, 486(1), 10-13, (2000). https://doi.org/10.1016/S0014-5793(00)02197-9
  2. Tanaka, n., Matsuo, T., Furukawa, K., Nishhida, M., Suemori, S., and Yasutake, A., "The "Greening" of Spacecraft Reaction Control Systems," Mitsubisi Heavy Ind. Tech. Rev., 48(4), 44-50 (2011).
  3. McLean, C. H., Deininger, W. D., Joniatis, J., Aggarwal, P. K., Spores, R. A., Deans, M., Yim, J. T., Bury, K., Martinez, J., Cardiff, E. H., and Bacha, C. E., "Green Propellant Infusion Mission Program Development and Technology Maturation," AIAA., 1-21 (2014).
  4. Ide, Y., Takahashi, T., Iwai, K., Nozoe, K., Habu, H., and Tokudome, S., "Potential of ADN-based Ionic Liquid Propellant for Spacecraft Propulsion," Procedia Eng., 99, 332-337 (2015). https://doi.org/10.1016/j.proeng.2014.12.543
  5. Amrousse, R., Katsumi, T., Itouyama, N., Azuma, N., Kagawa, H., Hatai, K., Ikeda, H., and Hori, K., "New HAN-based Mixtures for Reaction Control System and Low Toxic Spacecraft Propulsion Subsystem: Thermal Decomposition and Possible Thruster Applications," Combust. Flame, 162, 2686-2692 (2015). https://doi.org/10.1016/j.combustflame.2015.03.026
  6. Wingborg, N., "Ammonium Dinitramide-Water: Interaction and Properties," J. Chem. Eng. Data, 51(5), 1582-1586 (2006). https://doi.org/10.1021/je0600698
  7. Kleimark, J., Delanoe, R., Demaire, A., and Brinck, T., "Ionization of Ammonium Dinitramide: Decomposition Pathways and Ionization Products," Theor. Chem. Acc., 132(12), 1-9 (2013).
  8. Courtheoux, L., Amariei, D., Rossignol, S., and Kappenstein, C., "Thermal and Catalytic Decomposition of HNF and HAN Liquid Ionic as Propellants," Appl. Catal., B, 62(3-4), pp. 217-225 (2006). https://doi.org/10.1016/j.apcatb.2005.07.016
  9. Vyazovkin, S., and Wight, C. A., "Ammonium Dinitramide: Kinetics and Mechanism of Thermal Decomposition," J. Phys. Chem. A, 101(31), 5653-5658 (1997). https://doi.org/10.1021/jp962547z
  10. Gronland, T.-A., Westerberg, B., Bergman, G., Anflo, K., Brandt, J., Lyckfeldt, O., Agrell, J., Ersson, A., Jaras, S., Boutonnet, M., and Wingborg, N., "Reactor for Decomposition of Ammonium Dinitramide-based Liquid Monopropellants and Process for the Decomposition," U.S. Patent No. 7137244B2 (2006).
  11. Hong, S., Heo, S., Kim, W., Jo, Y. M., Park, Y. K., and Jeon, J. K., "Catalytic Decomposition of an Energetic Ionic Liquid Solution over Hexaaluminate Catalysts," Catalysts, 9(1), 80 (2019). https://doi.org/10.3390/catal9010080
  12. Heo, S., Kim, M., Kim, W., Jo, Y. M., Park, Y. K., and Jeon, J. K., "Catalytic Decomposition of an Ionic Liquid Monopropellant over Ir/hexaaluminate Catalysts," J. Nanosci. Nanotechnol, 19(12), 7906-7915 (2019). https://doi.org/10.1166/jnn.2019.16782
  13. Heo, S., Kim, M., Lee, J., Park, Y. C, and Jeon, J. K., "Decomposition of Ammonium Dinitramide-Based Liquid Propellant over Cu/hexaaluminate Pellet Catalysts," Korean J. Chem. Eng., 36(5), 660-668 (2019). https://doi.org/10.1007/s11814-019-0253-7
  14. Jo, H., You, D., Kim, M., Woo, J., Jung, K. Y., Jo, Y. M., and Jeon, J. K.," Decomposition of Eco-Friendly Liquid Propellants over Platinum/Hexaaluminate Pellet Catalysts," Clean Technol., 24, 371-379 (2018). https://doi.org/10.7464/KSCT.2018.24.4.371
  15. Gardner, T.H., Shekhawat, D., Berry, D.A., Smith, M.W., Salazar, M., and Kugler, E.L., "Effect of Nickel Hexaaluminate Mirror Cation on Structure-Sensitive Reactions during N-tetradecane Partial Oxidation," Appl. Catal., A, 323, 1-8 (2007). https://doi.org/10.1016/j.apcata.2007.01.051
  16. Jang, B.W.L., Nelson, R.M., Spivey, J.J., Ocal, M., Oukaci, R., and Marcelin, G., "Catalytic Oxidation of Methane over Hexaaluminates and Hexaaluminate-Supported Pd Catalysts," Catal. Today, 47(1-4), 103-113 (1999). https://doi.org/10.1016/S0920-5861(98)00288-0
  17. Wingborg, N., Eldsäter, C., and Skifs, H., "Formulation and Characterization of ADN-Based Liquid Monopropellants," ESA Special Publication, 557 (2004).
  18. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K. S. W., "Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report)," Pure Appl. Chem., 87(9-10), 1051-1069 (2015). https://doi.org/10.1515/pac-2014-1117
  19. Kim, S., Lee, D.-W., Lee, J. Y., Eom, H.-J., Lee, H. J., Cho, I.-H., and Lee, K.-Y., "Catalytic Combustion of Methane in Simulated PSA Offgas over Mn-Substituted La-Sr-hexaaluminate (LaxSr1-xMnAl11O19)," J. korean Ceram. Soc., 335(1-2), 60-64 (2011).
  20. Sohn, J. M., and Woo, S. I., "A Study on Physical Properties and Catalytic Combustion of Methane of Sr hexaaluminate Prepared using 1-butanol and Ethylene Glycol," Korean Chem. Eng. Res., 45(3), 209-214 (2007).