Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.8.2431

Electrophoretic Deposition for the Growth of Carbon nanofibers on Ni-Cu/C-fiber Textiles  

Nam, Ki-Mok (Department of Chemistry, Keimyung University)
Mees, Karina (Chair of Materials Processing, University of Bayreuth)
Park, Ho-Seon (Chair of Materials Processing, University of Bayreuth)
Willert-Porada, Monika (Chair of Materials Processing, University of Bayreuth)
Lee, Chang-Seop (Department of Chemistry, Keimyung University)
Publication Information
Abstract
In this study, Ni, Ni-Cu and Ni/Cu catalysts were deposited onto C-fiber textiles via the electrophoretic deposition method, and the growth characteristics of carbon nanofibers on the deposited catalyst/C-fiber textiles were investigated. The catalyst deposition onto C-fiber textiles was accomplished by immersing the C-fiber textiles into Ni or Ni-Cu mixed solutions, producing the substrate by post-deposition of Ni onto C-fiber textiles with pre-deposited Cu, and passing it through a gas mixture of $N_2$, $H_2$ and $C_2H_4$ at $700^{\circ}C$ to synthesize carbon nanofibers. For analysis of the characteristics of the synthesized carbon nanofibers and the deposition pattern of catalysts, SEM, EDS, BET, XRD, Raman and XPS analysis were conducted. It was found that the amount of catalyst deposited and the ratio of Ni deposition in the Ni-Cu mixed solution increased with an increasing voltage for electrophoretic deposition. In the case of post-deposition of Ni catalyst onto substrates with pre-deposited Cu, both bimetallic catalyst and carbon nanofibers with a high level of crystallizability were produced. Carbon nanofibers yielded with the catalyst prepared in Ni and Ni-Cu mixed solutions showed a Y-shaped morphology.
Keywords
Carbon nanofibers; Electrophoretic deposition; Nickel and copper catalyst; CVD; C-fiber textiles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Inagaki, M. Advanced Materials Science and Engineering of Carbon 2014, 8, 165.
2 Gu, S. Y.; Ren, J.; Vancso, G. J. European Polymer Journal 2005, 41, 2559.   DOI   ScienceOn
3 Guo, T.; Nikolev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Chemical Physics Letters 1995, 243, 49.   DOI   ScienceOn
4 Yoon, Y. J.; Baik, H. K. Diamond and Related Materials 2001, 10, 1214.   DOI   ScienceOn
5 Boccaccini, A. R.; Cho, J.; Roether, J. A.; Thomas, B. J. C.; Minay, E. J.; Shaffer, M. S. P. Carbon 2006, 44, 3149.   DOI   ScienceOn
6 ChandraKishore, S.; Pandurangan, A. Applied Surface Science 2012, 258, 7936.   DOI   ScienceOn
7 Wang, H. W.; Lin, H. C.; Yeh, Y. C.; Kuo, C. H. Journal of Magnetism and Magnetic Materials 2007, 310, 2425.   DOI   ScienceOn
8 Wang, R.; Wan, Y.; He, F.; Qi, Y.; You, W.; Luo, H. Applied Surface Science 2012, 258, 3007.   DOI   ScienceOn
9 Park, K. H.; Lee, S.; Koh, K. H. Diamond and Related Materials 2005, 14, 2094.   DOI   ScienceOn
10 Brandes, E. A.; Brook, G. B. Smithells Metals Reference Book; Chapter 13.
11 Zhang, Q.; Coi, Zuolin. Materials Letters 2009, 63, 850.   DOI   ScienceOn
12 Okpalugo, T. I. T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N. M. D. Carbon 2005, 43, 1.   DOI   ScienceOn
13 Gu, S. Y.; Ren, J.; Vancso, G. J. European Polymer Journal 2005, 41, 2559.   DOI   ScienceOn
14 Yang, K. S.; Kim, B. H.; Lee, W. J. Polymer Science and Technology 2010, 21, 179.
15 Han, S. M.; Park, S. M. RIST Research Paper 2004, 18, 124.
16 Chae, H. G.; Lee, S. H.; Gu, B. C.; Park, M.; Kim, J. Y. Polymer Science and Technology 2010, 21, 157.
17 Zhu, Y. A.; Sui, Zh. J.; Zhao, T. J.; Dai, Y. Ch.; Cheng, Zh. M.; Yuan, W. K. Carbon 2005, 43, 1694.   DOI   ScienceOn
18 Cheng, J.; Zou, X.; Zhang, H.; Li, F.; Ren, P.; Zhu, G.; Su, Y.; Wang, M. Nanoscale Res Lett. 2008, 3, 295.   DOI
19 Wieczorek-Ciurowa, K.; Kozak, A. J. Journal of Thermal Analysis and Calorimetry 1999, 58, 647.   DOI