• Title/Summary/Keyword: Crystallization rate

Search Result 314, Processing Time 0.029 seconds

Rheological properties and crystallization kinetics of polypropylene block copolymer with repeated extrusion

  • Sung Yu-taek;Seo Won Jin;Kim Jong Sung;Kim Woo Nyon;Kwak Dong-Hwan;Hwang Tae-Won
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.1
    • /
    • pp.21-25
    • /
    • 2005
  • Rheological properties and crystallization kinetics of the polypropylene (PP) block copolymer and recycled PP block copolymer were studied by advanced rheometric expansion system (ARES), differential scanning calorimetry (DSC), and optical microscopy. In the study of the dynamic rheology, it is observed that the storage modulus and loss modulus for the PP block copolymer and recycled PP block copolymer did not change with frequency. In the study of the effect of the repeated extrusion on the crystallization rate, half crystallization time of the PP samples was increased with the number of repeated extrusion in isothermal crystallization temperature ($T_c$). From the isothermal crystallization kinetics study, the crystallization rate was decreased with the increase of the number of repeated extrusion. Also, from the result of Avrami plot, the overall crystallization rate constant (K) was decreased with the increase of the number of the repeated extrusion. From the study of the optical microscopy, the size of the spherulite of the PP samples did not change significantly with the number of repeated extrusion. However, it was clearly observed that the number of the spherulite growth sites was decreased with the number of repeated extrusion. From the results of the crystallization rate, isothermal crystallization kinetics, Avrami plots, and optical microscopy, it is suggested that the crystallization rate of the PP block copolymer is decreased with the increase of the number of repeated extrusion.

The Effect of Crystallization Condition on the Crystallization Rate of Zeolite A (제올라이트 A의 결정화 속도에 대한 결정화 조건의 영향)

  • Chung, Kyeong-Hwan;Seo, Gon
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.94-102
    • /
    • 1993
  • The effects of temperature and of $Na_2O$ and $SiO_2$ contents on the crystallization of zeolite A were studied, by examining crystallization curves and particle size distributions of final products at various crystallization conditions. Crystallization process could be simulated adopting the assumptions of constant linear growth rate and equilibrium between amorphous solid phase and soluble species. Rate constants were determined by comparing the simulated crystallization curves with experimental data. Rate constant for linear growth increased with temperature and crystallization rate at different mole ratio of $Na_2O/H_2O$ correlated reasonably well with increase of soluble species. The rate constant of crystallization did not increase with increase in mole ratio of $Na_2O/H_2O$, but the rate of nuclei formation and the fraction of soluble species were enhanced. The rate constants for linear growth of zeolite A were determined as $0.07{\sim}0.24{\mu}m{\cdot}min^{-1}$ at these experimental conditions Apparent activation energy was estimated as $49kJ{\cdot}mol^{-1}$.

  • PDF

Synthesis and Non-Isothermal Crystallization Behavior of Poly (ethylene-co-1,4-butylene terephthalate)s

  • Jinshu Yu;Deri Zhou;Weimin Chai;Lee, Byeongdu;Le, Seung-Woo;Jinhwan Yoon;Moonhor Ree
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.25-35
    • /
    • 2003
  • A series of random poly(ethylene-co-1,4-butylene terephthalate)s (PEBTs), as well as poly(ethylene terephthalate) (PET) and poly(1,4-butylene terephthalate) (PBT), were synthesized by the bulk polycondensation. Their composition, molecular weight, and thermal properties were determined. All the copolymers are crystallizable, regardless of the compositions, which may originate from both even-atomic-numbered ethylene terephthalate and butylenes terephthalate units that undergo inherently crystallization. Non-isothermal crystallization exotherms were measured over the cooling rate of 2.5-20.0 K/min by calorimetry and then analyzed reasonably by the modified Avrami method rather than the Ozawa method. The results suggest that the primary crystallizations in the copolymers and the homopolymers follow a heterogeneous nucleation and spherulitic growth mechanism. However, when the cooling rate increases and the content of comonomer unit (ethylene glycol or 1,4-butylene glycol) increases, the crystallization behavior still becomes deviated slightly from the prediction of the modified Avrami analysis, which is due to the involvement of secondary crystallization and the formation of relatively low crystallinity. Overall, the crystallization rate is accelerated by increasing cooling rate but still depended on the composition. In addition, the activation energy in the non-isothermal crystallization was estimated.

Preparation and Crystallization Behavior of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Grafted with Poly(N-vinylpyrrolidone) (Poly(N-vinylpyrrolidone)이 그래프트된 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 공중합체의 합성 및 결정화 거동)

  • Wang, Wei;Zhang, Yu;Chen, Yanmo
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.385-392
    • /
    • 2007
  • Poly (N-vinylpyrrolidone) (PVP) groups were grafted onto a poly(3-hydroxybutyrate-co-3-hydroryvalerate) (PHBV) backbone in order to modify its properties and synthesize a novel biocompatible copolymer. The crystallization behavior of PHBV and grafted PHBV was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). During the cooling-induced crystallization process, the crystallization temperature and the crystallization rate of the grafted PHBV decreased with increasing PVP weight fraction. On the heating scans of all grafted PHBV samples, a new crystallization exothermic peak appeared at almost the same temperature, suggesting the operation of a recrystallization process, while the melting temperature ($T_m$) and the apparent enthalpy of fusion (${\Delta}H_f$) were not affected by graft modification. During the isothermal crystallization process at the same temperature, the presence of side PVP groups decreased the spherulitic growth rate and the spherulitic band spacing with increasing PVP weight fraction in samples.

Study on the Isothermal Crystallization Behaviors of PEN/TLCP Blends

  • Park, Jong-Ryul;Yoon, Doo-Soo;Lee, Eung-Jae;Bang, Moon-Soo;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.56-62
    • /
    • 2016
  • The isothermal crystallization behaviors of blends of poly(ethylene naphthalate) (PEN) and a thermotropic liquid crystalline polymer (TLCP) were investigated by differential scanning calorimetry (DSC) as functions of crystallization temperature and blend composition. Avrami analyses were applied to obtain information on the crystal growth geometry and the factors controlling the rate of crystallization. The crystallization kinetics of the PEN/TLCP blends followed the Avrami equation up to a high degree of crystallization, regardless of crystallization temperature. The calculated Avrami exponents for PEN/TLCP revealed three-dimensional growth of the crystalline region in each blend. The crystallization rate of each blend increased as the crystallization temperature decreased, and decreased as the TLCP content increased. The crystallization of PEN in the blend was affected by the addition of TLCP, which acts as a nucleating agent.

Crystallization Behaviors of Liquid Crystalline Polymer/poly(ethylene terephthalate) blends (액정 고분자와 폴리(에틸렌 테레프탈레이트) 블렌드의 결정화 거동)

  • Bang Moon-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.559-566
    • /
    • 2006
  • The isothermal crystallization behavior of blends of poly(ethylene terephthalate) and liquid crystalline polymers(LCP) was studied. The Avrami analyses were applied to obtain the information on the crystal growth geometry and factors controlling the rate of crystallization. The crystallization kinetics for the blends followed the classical Avrami equation up to a high degree of crystallization regardless of crystallization temperature, The values of Avrami exponent, n, for PET in the blends were estimated to be around 2, which indicate that the polymer crystals grow into one-dimensional linear or fiber-like crystallization mode. The crystallization rate, as expected, decreases with increasing the crystallization temperature.

  • PDF

Fabrication and Characteristics of poly-Si thin film transistors by double-metal induced lteral crystallization at 40$0^{\circ}C$ (이중 금속 측면 결정화를 이용한 40$0^{\circ}C$ 다결정 실리콘 박막 트랜지서터 제작 및 그 특성에 관한 연구)

  • 이병일;정원철;김광호;안평수;신진욱;조승기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.33-39
    • /
    • 1997
  • The crystallization temperature of an amorphous silicon (a-Si) can be lowered down to 400.deg. C by a new method : Double-metal induced lateral crystallization (DMILC). The a-Si film was laterally crystallized from Ni and Pd deposited area, and its lateral crystallization rate reaches up to 0.2.mu.m/hour at that temperature and depends on the overlap length of Ni and Pd films; the shorter the overlap length, the faster the rate. Poly-Silicon thin film transistors (poly-Si TFT's) fabricated by DMILC at 400.deg. C show a field effect mobility of 38.5cm$^{3}$/Vs, a minimum leakage current of 1pA/.mu.m, and a slope of 1.4V/dec. The overlap length does not affect the characteristics of the poly-Si TFT's, but determines the lateral crystallization rate.

  • PDF

Effect of Activation Energy and Crystallization Kinetics of Polyethylenes on the Stability of Film Casting Processes

  • Lee, Joo-Sung;Cho, Joon-Hee
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.135-141
    • /
    • 2009
  • Effect of activation energy and crystallization kinetics of polyethylenes (PEs) on the dynamics and stability has been investigated by changing rheological properties and crystallization rate in film casting process. The effect of changes of these properties has been shown using a typical example of short-chain branching (SCB) in linear polyethylenes. SCBs in linear polymers generally lead to the increase of the flow activation energy, and to the decrease of the crystallization rate, making polymer viscosity lower in the case of equivalent molecular weight. In general, the increment of the crystallinity of polymers under partially crystallized state helps to enhance the process stability by increasing tension, and lower fluid viscoelasticity possesses the stabilizing effect for linear polymers. It has been found that the fluid viscoelasticity plays a key role in the control of process stability than crystallization kinetics which critically depends on the cooling to stabilize the film casting process of short-chain branched polymers operated under the low aspect ratio condition.

Effects of salt crystallization on stone durability (염분의 결정화 현상이 석재 내구성에 끼치는 영향)

  • 김성수
    • Economic and Environmental Geology
    • /
    • v.32 no.2
    • /
    • pp.203-208
    • /
    • 1999
  • The main objective of this study is to suggest a new assessment method of the influence of weathering due to salt crystallization on the engineering property of rock. For this purpose, various sources of salt and salt crystallization were investigated, and artificially accelerated weathering tests were carried out. In natural envionment, weathering rate is very slow and weathering process involves complex mechanisms. Therefore artificial weathering test is essential for systematic analysis. Arificial weathering test is defined as test which controls weathering rate and agents by controlling arificial environmental condition. In this study, salt crystallization test was selected among various artificial weathering test methods, for its important role in weathering. Change of various stone properties were detexted. The change of physical properties by salt crystallization were observed as follows : 72% in Brazilian tensile strength and 72% in Slake durability. These results explain the importance of salt crystallization in the mechanical behaviour and properties of stone.

  • PDF

Copolyester Studies VIII. Crystallization Behaviours of Poly(ethylene terephthalate) Modified by the Flexible Diol Unit (Polyester의 개질에 관한 연구 (제8보). 유연한 디올 Unit로 개질된 Poly(ethylene terephthalate)의 결정화 거동)

  • Tae Oan Ahn;Jung Ho Kim;Han Mo Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.276-284
    • /
    • 1988
  • The crystallization behaviours of poly(ethylene terephthalate) modified by 1, 3-propane diol, 1, 5-pentane diol, 1, 6-hexane diol, or poly(ethylene glycol) of molecular weight 300 as a third component were studied by isothermal and nonisothermal crystallization. When the content of the third diol was about 4 mol %, the isothermal crystallization rate at the same supercooling below the melting temperature and the nonisothermal crystallization rate at the same overheating above the glass transition temperature were increased more by the shorter flexible diol unit. On the contrary the nonisothermal crystallization rate at the same supercooling below the melting temperature was increased more by the longer flexible diol unit.

  • PDF