Browse > Article

Effect of Activation Energy and Crystallization Kinetics of Polyethylenes on the Stability of Film Casting Processes  

Lee, Joo-Sung (LG Chem / Research Park)
Cho, Joon-Hee (LG Chem / Research Park)
Publication Information
Korea-Australia Rheology Journal / v.21, no.2, 2009 , pp. 135-141 More about this Journal
Abstract
Effect of activation energy and crystallization kinetics of polyethylenes (PEs) on the dynamics and stability has been investigated by changing rheological properties and crystallization rate in film casting process. The effect of changes of these properties has been shown using a typical example of short-chain branching (SCB) in linear polyethylenes. SCBs in linear polymers generally lead to the increase of the flow activation energy, and to the decrease of the crystallization rate, making polymer viscosity lower in the case of equivalent molecular weight. In general, the increment of the crystallinity of polymers under partially crystallized state helps to enhance the process stability by increasing tension, and lower fluid viscoelasticity possesses the stabilizing effect for linear polymers. It has been found that the fluid viscoelasticity plays a key role in the control of process stability than crystallization kinetics which critically depends on the cooling to stabilize the film casting process of short-chain branched polymers operated under the low aspect ratio condition.
Keywords
activation energy; crystallization; film casting; stability;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Bubeck, R. A., 2002, Structure-property relationships in metallocene polyethylenes, Mat. Sci. Eng. R, 39, 1   DOI   ScienceOn
2 Kim, J. M., J. S. Lee, D. M. Shin, H. W. Jung and J. C. Hyun, 2005, Transient solutions of the dynamics of film casting process using a 2-D viscoelastic model, J. Non-Newtonian Fluid Mech., 132, 53   DOI   ScienceOn
3 Kim, Y. S., C. I. Chung, S. Y. Lai and K. S. Hyun, 1996, Melt rheological and thermodynamic properties of polyethylene homopolymer and poly(ethylene/-olefin) copolymers with respect to molecular composition and structure, J. Appl. Polym. Sci., 59, 125   DOI   ScienceOn
4 Park, S. J. and R. G. Larson, 2005, Modeling the linear viscoelastic properties of metallocene-catalyzed high density polyethylenes with long-chain branching, J. Rheol., 49, 523 (2005)   DOI   ScienceOn
5 Yeow Y. L, 1974, On the stability of extending film: a model for the film casting process, J. Fluids Mech., 66, 613   DOI
6 Lee, J. S., H. W. Jung, H.-S. Song, K.-Y. Lee and J. C. Hyun, 2001, Kinematic waves and draw resonance in film casting process, J. Non-Newtonian Fluid Mech., 101, 43   DOI   ScienceOn
7 Wood-Adams, P. and Costeux, S. 2001, Thermorheological behavior of polyethylene: Effects of microstructure and long chain branching, Macromolecules, 34, 6281   DOI   ScienceOn
8 Shin, D. M., J. S. Lee, H. W. Jung and J. C. Hyun, 2005, Analysis of the Effect of flow-induced crystallization on the stability of low-speed spinning using the linear stability method, Korea-Australia Rheol. J., 17, 63
9 Iyengar, V. R. and A. Co, A., 1996, Film casting of a modified Giesekus fluid: stability analysis, Chem. Eng. Sci., 51, 1417   DOI   ScienceOn
10 Jung, H. W. and J. C. Hyun, 2006, Instabilities in extensional deformation polymer processing, in Rheology Reviews edited by D.M. Binding & K. Walters, British Society of Rheology
11 Zavinska, O., J. Claracq and S. Eijndhoven, 2008, Non-isothermal film casting: Determination of draw resonance, J. Non-Newtonian Fluid Mech., 151, 21   DOI   ScienceOn
12 Anturkar, N. R. and A. Co, 1988, Draw resonance in film casting of viscoelastic fluids: a linear stability analysis, J. Non-Newtonian Fluid Mech. 28, 287   DOI   ScienceOn
13 Vega, J. F. A. Santamaria, A. Munoz-Escalona and P. Lafuente, 1998, Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes, Macromolecules, 31, 3639   DOI   ScienceOn
14 Shin, D. M., J. S. Lee, J. M. Kim, H. W. Jung and J. C. Hyun, 2007, Transient and steady-state solutions of 2-D viscoelastic nonisothermal simulation model of film casting process via finite element method, J. Rheol., 51, 393   DOI   ScienceOn
15 Silagy, D., Y. Demay and J.-F. Agassant, 1996, Study of the stability of the film casting process, Polym. Eng. Sci., 36, 2614   DOI   ScienceOn
16 Muslet, I. A. and M. R. Kamal, 2004, Computer simulation of the film blowing process incorporating crystallization and viscoelasticity, J. Rheol., 48, 525   DOI   ScienceOn
17 Phan-Thien, N., 1978, A nonlinear network viscoelastic model, J. Rheol., 22, 259   DOI   ScienceOn
18 Stadler, F. J. and H. Munstedt, 2008, Terminal viscous and elastic properties of linear ethane/-olefin copolymers, J. Rheol., 52, 697   DOI   ScienceOn
19 Chiu, F.-C., Y. Peng and Q. Fu, 2002, Bulk crystallization kinetics of metallocene polyethylenes with well-controlled molecular weight and short chain branch content, J. Polym. Res., 9, 175   DOI   ScienceOn
20 Silagy, D., Y. Demay and J.-F. Agassant, 1998, Stationary and stability analysis of the film casting process,' J. Non-Newtonian Fluid Mech., 79, 563   DOI   ScienceOn
21 Kanai, T. and G. A. Campbell, 1999, Film Processing, Hanser publishers, Cincinnati
22 Jung, H. W., J. S. Lee and J. C. Hyun, 2002, Sensitivity analysis of melt spinning process by frequency response, Korea-Australia Rheol. J., 14, 57   과학기술학회마을
23 Munstedt, H., S. Kurzbeck and L. Egersdorfer, 1998, Influence of molecular structure on rheological properties of polyethylenes. Part II. Elongational behavior, Rheol. Acta, 37, 21   DOI   ScienceOn
24 Lee, J. S., H. W. Jung and J. C. Hyun, 2003, Frequency response of film casting process, Korea-Australia. Rheol. J., 15, 91   과학기술학회마을
25 Kwon, Y. and Leonov, A. L., 1995, Stability constraints in the formulation of viscoelastic constitutive-equations, 58, 25
26 Stadler, F. J., C. Gabriel and H. Munstedt, 2007, Influence of short-chain branching of polyethylenes on the temperature dependence of rheological properties in shear, Macromol. Chem. Phys., 208, 2449   DOI   ScienceOn