• Title/Summary/Keyword: Crystallite Size

Search Result 290, Processing Time 0.024 seconds

Catalytic Deep Oxidation of Volatile Organic Compounds Toluene and Toluene+Xylene over γPt/γ-Al2O3 Catalysts at Lower Temperatures (알루미나에 담지한 백금 촉매상에서 휘발성 유기화합물 톨루엔 및 톨루엔+자일렌의 저온산화)

  • Kim Sang-Hwan;Kang Tae-Sung;Yang Hee-Sung;Nhu Y Vu Trinh;Park Hyung-Sang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.799-807
    • /
    • 2006
  • The catalytic activity of $Pt/{\gamma}-Al_2O_3$ catalysts for the oxidation of toluene and toluene+xylene mixture was investigated in the microreactor of fixed-bed type. The calcination temperatures and loadings of $Pt/{\gamma}-Al_2O_3$ catalysts played the important role in the activity of catalysts for the oxidation of toluene. The increasing calcination temperatures and loadings of $Pt/{\gamma}-Al_2O_3$ catalysts increased the crystallite size of the platinum to result in the higher oxidation activity of catalysts. The catalytic activity for the toluene oxidation over $Pt/{\gamma}-Al_2O_3$ catalysts turned out to be increasing in the order of $500^{\circ}C\;<\;800^{\circ}C<600^{\circ}C\;<\;700^{\circ}C$ for calcination temperatures and 0.1 wt% < 0.3 wt% < 1.0 wt% for platinum loadings, respectively. The 1.0 wt% $Pt/{\gamma}-Al_2O_3$ catalysts calcined at $700^{\circ}C$ for 3 hrs in the air showed the highest activity for the oxidation of the toluene. The decrease of oxidation activity of $Pt/{\gamma}-Al_2O_3$ catalysts calcined at $800^{\circ}C$ might result from the decrease of active sites by sintering of platinum metals as well as ${\gamma}-Al_2O_3$ supports. The 1.0wt% $Pt/{\gamma}-Al_2O_3$ catalyst showed the activity from the lower temperature at $120^{\circ}C$, reached the light-off temperature ($T_{50%}$) at $180^{\circ}C$, and leveled off its activity at $340^{\circ}C$ with the conversion of 100% 'Mutual promotion' effects were observed for the binary mixture of toluene and xylene. The activity of the easy-to-oxidize toluene was slightly increased with the existence of the xylene. It might suggest the different mechanism for the oxidation of toluene and xylene on the $Pt/{\gamma}-Al_2O_3$ catalysts on different sites, and its reaction of gaseous oxygen.

The Hydrogenated Micro-crystalline Silicon(${\mu} c-Si:H$) Films Deposited by Hot Wire CVD Method (Hot Wire CVD법에 의한 수소화된 미세결정 실리콘(${\mu} c-Si:H$) 박막 증착)

  • Lee, Jeong-Cheol;Song, Jin-Su;Park, Lee-Jun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.8
    • /
    • pp.17-27
    • /
    • 2000
  • This paper presents deposition and characterization of hydrogenated microcrystalline silicon (${\mu}c$ -Si:H) films on low cost glass substrate by Hot Wire CVD(HWCVD). The HWCVD ${\mu}c$ -Si:H films had deposition rates ranging from 2${\AA}$/sec to 35${\AA}$/sec with the variations of preparation conditions, which was 10 times higher than that of the films obtained from the conventional PECVD method. From the Raman spectroscopy, the prepared silicon films were found to be composed of the mixture of crystalline and amorphous phases. The crystalline volume fraction and average crystallite size, obtained from the Raman To mode peak near 520cm$^{-1}$, were 37-63% and 6-10 nm, respectively. The conductivity activation energy($E_a$) of the ${\mu}c$ -Si:H films, representing the difference of conduction band and Fermi level in an intrinsic semiconductors, increased from 0.22eV to 0.68eV with increasing pressure from 30mTorr to 300mTorr. The increase of $E_a$ with pressure indicates that the deposited films have properties close to intrinsic semiconductors, which is also proved with low dark conductivity of the ${\mu}c$ -Si:H deposited at 300mTorr. The tungsten concentration incorporated into films was about $6{\times}10^{16}atoms/cm^3$ in the samples prepared at wire temperature of 1800$^{\circ}C$.

  • PDF

Effects of Working Pressure on Structural and Optical Properties of HfO2 Thin Films (공정 압력이 HfO2 박막의 구조적 및 광학적 특성에 미치는 영향)

  • Joung, Yang-Hee;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1019-1026
    • /
    • 2017
  • The structural properties of $HfO_2$ films could be improved by calibrating the working pressure owing to the enhanced quality of a thin film. We deposited $HfO_2$ films on glass substrates by radio frequency (RF) magnetron sputtering under a base vacuum pressure lower than $4.5{\times}10^{-6}Pa$, RF power of 100 W, substrate temperature of $300^{\circ}C$. The working pressures were varied from 1 mTorr to 15 mTorr. Subsequently, their structural and optical properties were investigated. In particular, the $HfO_2$ film deposited at 1 mTorr had superior properties than the others, with a crystallite size of 10.27 nm, surface roughness of 1.173 nm, refractive index of 2.0937 at 550 nm, and 84.85 % transmittance at 550 nm. These results indicate that the $HfO_2$ film deposited at 1 mTorr is suitable for application in transparent electric devices.

Synthesis of CoFe2O4 Nanoparticles as Electrocatalyst for Oxygen Evolution Reaction (산소 발생 반응 용 전기화학촉매로 사용되는 CoFe2O4 나노 입자 합성 및 특성 분석)

  • Lee, Jooyoung;Kim, Geulhan;Yang, Juchan;Park, Yoo Sei;Jang, Myeong Je;Choi, Sung Mook
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.97-104
    • /
    • 2020
  • One of the main challenges of electrochemical water splitting technology is to develop a high performance, low cost oxygen-evolving electrode capable of substituting a noble metal catalyst, Ir or Ru based catalyst. In this work, CoFe2O4 nanoparticles with sub-44 nmsize of a inverse spinel structure for oxygen evolution reaction (OER) were synthesized by the injection of KNO3 and NaOH solution to a preheated CoSO4 and Fe(NO3)3 solution. The synthesis time of CoFe2O4 nanoparticles was controlled to control particle and crystallite size. When the synthesis time was 6 h, CoFe2O4 nanoparticles had high conductivity and electrochemical surface area. The overpotential at current denstiy of 10 mA/㎠ and Tafel slope of CoFe2O4 (6h) were 395 mV and 52 mV/dec, respectively. In addition, the catalyst showed excellent durability for 18 hours at 10 mA/㎠.

Effect of Mesoporous TiO2 in Facilitated Olefin Transport Membranes Containing Ag Nanoparticles (나노입자가 포함된 촉진수송 분리막에서의 메조기공 티타늄산화물의 영향)

  • Kim, Sang Jin;Jung, Jung Pyu;Kim, Dong Jun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.398-405
    • /
    • 2015
  • Facilitated transport is considered to be a possible solution to simultaneously improve permeability and selectivity, which is challenging in normal polymeric membranes based on solution-diffusion transport only. We investigated the effect of adding mesoporous $TiO_2$ ($m-TiO_2$) upon the separation performance of facilitated olefin transport membranes comprising poly(vinyl pyrrolidone), Ag nanoparticles, and 7,7,8,8-tetracyanoquinodimethane as the polymer matrix, olefin carrier, and electron acceptor, respectively. In particular, $m-TiO_2$ was prepared by means of a facile, mass-producible method using poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft copolymer as the template. The crystal phase of $m-TiO_2$ consisted of an anatase/rutile mixture, of crystallite size approximately 16 nm as determined by X-ray diffraction. The introduction of $m-TiO_2$ increased the membrane diffusivity, thereby increasing the mixed-gas permeance from 1.6 to 16.0 GPU ($1GPU=10^{-6}cm^3$(STP)/($s{\times}cm^2{\times}cmHg$), and slightly decreased the propylene/propane selectivity from 45 to 37. However, both the mixed-gas permeance and selectivity of the membrane containing $m-TiO_2$ rapidly decreased over time, whereas the membrane without $m-TiO_2$ had more stable long-term performance. This difference might be attributed to specific chemical interactions between $TiO_2$ and Ag nanoparticles, causing Ag to lose activity as an olefin carrier.

Preparation of Nanocomposite Metal Powders in Metal-Carbon System by Mechanical Alloying Process (기계적 합금화 방법에 의한 금속-카본계에서의 나노복합금속분말의 제조)

  • Kim, Hyun-Seung;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.328-336
    • /
    • 1998
  • In metal-carbon system with no mutual solubility between matrix and alloying elements as solid or liquid phases, Cu-C-X nanocomposite metal powders were prepared by high energy ball milling for solid-lubricating bronze bearings. Elemental powder mixtures of Cu-lOwt.%C- 5wt. %Fe and Cu- lOwt. %C- 5wt. %Al were mechanically alloyed with an attritor in an argon atmosphere, and then microstructural evolution of the Cu-C-X nanocomposite metal powders was examined. It has been found that after 10 hours of MA, the approximately 10$\mu\textrm{m}$ sized Cu-C- X nanocomposite metal powders can be produced in both compositions. Morphological characteristics and microstructural evolution of the Cu-C-X powders have shown a similar MA procedure compared to those of metal-metal system. As a result of X - ray diffraction analysis, diffraction peaks of Cu and C were broaden and peak intensities were decreased as a function of MA time. Especially, the gradual disappearance of C peaks in the X- ray spectra is proved to be due to the lower atomic scattering factor of C. The calculated Cu crystallite sizes in Cu- C- X nanocomposite metal powders by Williamson- Hall equation were about lOnm size, on the other hand, the observed ones by TEM were in the range of 10 to 30nm.

  • PDF

Synthesis of Titanium Dioxides by Microemulsion Method and Their Photocatalytic Degradation of p-Nitrophenol (마이크로에멀젼법에 의한 이산화티탄의 합성 및 p-Nitrophenol의 광촉매 분해반응)

  • Jung, Won Young;Han, Yeon Hee;Lee, Gun-Dae;Park, Seong Soo;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.351-356
    • /
    • 2008
  • Titania nanoparticles were prepared by controlled hydrolysis of titanium tetraisopropoxide (TTIP) in water-in-oil (W/O) and microemulsion stabilized with a nonionic surfactant, N P-10 (Polyoxyethylene Nonylphenol Ether: $C_9H_{19}C_6H_4(OCH_2CH_2)_{10}OH$)). The nanosized particles prepared in W/O microemulsion were characterized by FT-IR, TEM, XRD, TGA, and DTA. In addition, the photocatalytic degradation of p-nitrophenol has been studied by using a batch reactor in the presence of UV light in order to compare the photocatalytic activity of prepared nanosized titania. The nanaosized titania particles calcined at $300{\sim}600^{\circ}C$ showed an anatase structure, but it transformed to a rutile phase above $700^{\circ}C$ of calacination temperature. With an increase of $W_o$ ratio, the crystallite size increased but photocalytic activity decreased. The titania synthesized at $W_o=5$, R = 2, and calcined at $400{\sim}500^{\circ}C$ showed the highest activity on the photocatalytic degradation of p-nitrophenol.

Phase stability of TiO2 synthesized by Sol-gel Method at various pH and calcination temperatures (졸-겔 방법으로 합성된 TiO2 상안정성에 대한 pH 및 열처리 온도의 영향)

  • Lee, Jae-Yeon;Kim, Yong-Jin;Kim, Dae-Sung;Shin, Hyo-Soon;Nahm, Sahn;Chun, Myoung-Pyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.166-173
    • /
    • 2021
  • The rutile phase of TiO2 forms a stable phase at high temperatures compared to anatase phase, but the stable temperature range of anatase changes depending on the synthesis conditions. In this study, nano-sized TiO2 was synthesized by the Sol-gel method using TiOSO4 and a mixed solvent of ethanol and distilled water, and the phase change of anatase and rutile according to pH and heat treatment temperature was investigated. Changes in the ratio of anatase and rutile were observed by changing the pH (3, 5, 7, 9) and heat treatment temperature (500, 600, 700, 800, 900℃) conditions of the prepared TiO2. As a result of observing these changes through XRD and FE-SEM analysis, anatase TiO2 at 500℃ and rutile TiO2 at 900℃ were observed. According to the pH, at these intermediate temperatures of 600, 700 and 800℃, the ratio of anatase and rutile changes. At 700℃, it was concluded that pH = 3~5 had a larger ratio of anatase TiO2, and pH = 7~9 had a larger ratio of rutile TiO2.

Synthesis of Methanol from Carbon Dioxide (I). Study on Cu / ZnO Catalyst System (이산화탄소에 의한 메탄올 합성 (제 1 보). Cu / ZnO 촉매계 연구)

  • Sung Yun Cho;Ki Won Jun;Dae Chul Park;Kyu Wan Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.558-567
    • /
    • 1989
  • The synthesis of methanol from carbon dioxide and hydrogen was studied for various compositions of Cu/ZnO catalyst system. Effect of the composition ratio of CuO and ZnO on the catalytic activity in the above reaction and the relationship between the activity and the characteristics of the catalysts were explained from the result of surface area measurements, SEM, XRD, and XPS. The major products of the reaction were methanol and carbon monoxide. The selectivity to methanol increased with increase of the copper oxide content in the catalyst up to CuO: ZnO = 30:70 weight ratio, and decreased rapidly when the content is above 70%. SEM and BET measurements, indicate that this point corresponds to the increasing point of the catalyst crystallite size and the decreasing point of the surface area. As to the Cu/Cu + Zn atomic ratio, the surface concentration of copper measured by XPS decreased remarkably when the copper oxide content in catalyst was higher than 50%. All the unreduced catalysts had almost same binding energy of Cu(2P3) level, but the binding energy for $Cu(2P^3)$ level of reduced catalysts was lowered than that of calcined catalysts. The surface copper species which was in the maximum amount when the CuO:ZnO composition in the catalyst was 30:70, existed as zero valent copper. This result agreed with the experimental result that the highest rate of methanol formation was observed when the CuO content in the catalyst was 30%. It was postulated that these reduced catalysts performed with a relatively strong basicity because the formation rate of acetone was higher than that of propylene in isopropanol decomposition as measured in a pulse type reactor.

  • PDF

Characterization of Synthesized Carbonate and Sulfate Green Rusts: Formation Mechanisms and Physicochemical Properties (합성된 탄산염 및 황산염 그린 러스트의 형성 메커니즘과 이화학적 특성 규명)

  • Lee, Seon Yong;Choi, Su-Yeon;Chang, Bongsu;Lee, Young Jae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.111-123
    • /
    • 2022
  • Carbonate green rust (CGR) and sulfate green rust (SGR) commonly occur in nature. In this study, CGR and SGR were synthesized through co-precipitation, and their formation mechanisms and physicochemical properties were investigated. X-ray diffraction (XRD) and Rietveld refinement showed both CGR and SGR with layered double hydroxide structure were successfully synthesized without any secondary phases under each synthetic condition. Refined structural parameters (unit cell) for two green rusts were a (=b) = 3.17 Å and c = 22.52 Å for CGR and a (=b) = 5.50 Å and c = 10.97 Å for SGR with the crystallite size 57.8 nm in diameter from (003) reflection and 40.1 nm from (001) reflections, respectively. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) results showed that both CGR and SGR had typical hexagonal plate-like crystal morphologies but their chemical composition is different in the content of C and S. In addition, Fourier transform infrared (FT-IR) spectroscopy analysis revealed that carbonate (CO32-) and sulfate (SO42-) molecules were occupied as interlayer anions of CGR and SGR, respectively. These SEM/EDS and FT-IR results were in good agreement with XRD results. Changes in the solution chemistry (i.e., pH, Eh and residual iron concentrations (Fe(II):Fe(III)) of the mixed solution) were observed as a function of the injection time of hydroxyl ion (OH-) into the iron solution. Three different stages were observed in the formation of both CGR and SGR; precursor, intermediator, and green rust in the formation of both CGR and SGR. This study provides co-precipitation methods for CGR and SGR in a way of the stable synthesis. In addition, our findings for the formation mechanisms of the two green rusts and their physicochemical properties will provide crucial information with researches and industrials in utilizing green rust.