DOI QR코드

DOI QR Code

Effects of Working Pressure on Structural and Optical Properties of HfO2 Thin Films

공정 압력이 HfO2 박막의 구조적 및 광학적 특성에 미치는 영향

  • 정양희 (전남대학교 전기 및 반도체공학과) ;
  • 강성준 (전남대학교 전기 및 반도체공학과)
  • Received : 2017.09.27
  • Accepted : 2017.12.15
  • Published : 2017.12.31

Abstract

The structural properties of $HfO_2$ films could be improved by calibrating the working pressure owing to the enhanced quality of a thin film. We deposited $HfO_2$ films on glass substrates by radio frequency (RF) magnetron sputtering under a base vacuum pressure lower than $4.5{\times}10^{-6}Pa$, RF power of 100 W, substrate temperature of $300^{\circ}C$. The working pressures were varied from 1 mTorr to 15 mTorr. Subsequently, their structural and optical properties were investigated. In particular, the $HfO_2$ film deposited at 1 mTorr had superior properties than the others, with a crystallite size of 10.27 nm, surface roughness of 1.173 nm, refractive index of 2.0937 at 550 nm, and 84.85 % transmittance at 550 nm. These results indicate that the $HfO_2$ film deposited at 1 mTorr is suitable for application in transparent electric devices.

$HfO_2$ 박막은 공정압력을 조정함으로써 박막의 질을 향상시켜 그 구조적 특성을 개선시킬 수 있다. 본 연구에서는 RF 마그네트론 스퍼터링 방법을 이용하여 유리 기판 위에 $HfO_2$ 박막을 증착하였으며, 이때의 기저 진공 압력은 $4.5{\times}10^{-6}Pa$ 이하였으며 RF 파워는 100 W, 기판의 온도는 $300^{\circ}C$ 이었다. 해당 박막 증착 공정의 공정 압력은 1 mTorr 에서 15 mTorr 로 변화되었다. 그 후, 해당 박막의 구조적 및 광학적 특성들을 조사하였다. 특히, 1 mTorr 의 공정 압력으로 증착된 $HfO_2$ 박막이 다른 박막들과 비교하여 가장 우수한 특성을 가진 것으로 나타났으며, 이때의 결정립의 크기는 10.27 nm, 표면 거칠기는 1.173 nm, 550 nm 파장에서의 굴절률은 2.0937, 그리고 550 nm 파장에서의 투과율은 84.85 % 의 우수한 특성을 나타내었다. 이러한 결과들을 통해 1 mTorr 의 공정 압력으로 증착된 $HfO_2$ 박막은 투명 전자 소자에 적용하기에 적합함을 알 수 있다.

Keywords

References

  1. C. Y. Ma, W. J. Wang, C. Y. Miao, S. L. Li, and Q. Y. Zhang, "Structural, morphological, optical and photoluminescence properties of $HfO_2$ thin films," Thin Solid Films, vol. 545, Aug. 2013, pp. 279-284. https://doi.org/10.1016/j.tsf.2013.08.068
  2. G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-k gate dielectrics: Current status and materials properties considerations," J. of Applied Physics, vol. 89, no. 10, May 2001, pp. 5243-5275. https://doi.org/10.1063/1.1361065
  3. K. Kamala Bharathi, N. R. Kalidindi, and C. V. Ramana, "Grain size and strain effects on the optical and electrical properties of hafnium oxide nanocrystalline thin films," J. of Applied Physics, vol. 108, Oct. 2010, pp. 083529-1-5. https://doi.org/10.1063/1.3499325
  4. W. Liu, Z. Liu, F. Yan, T. Tan, and H. Tian, "Influence of $O_2$/Ar flow ratio on the structure and optical properties of sputtered hafnium dioxide thin films," Surface & Coating Technology, vol. 205, Sept. 2010, pp. 2120-2125. https://doi.org/10.1016/j.surfcoat.2010.08.116
  5. M. F. Al-Kuhaili, "Optical properties of hafnium oxide thin films and their application in energy-efficient windows," Optical Materials, vol. 27, Oct. 2004, pp. 383-387. https://doi.org/10.1016/j.optmat.2004.04.014
  6. J. Ni, Q. Zhou, Z. Li, and Z. Zhang, "Oxygen defect induced photoluminescence of $HfO_2$ thin films," Applied Physics Letter, vol. 93, July 2008, pp. 011905-1-3. https://doi.org/10.1063/1.2952288
  7. R. Puthenkovilakam, Y. S. Lin, J. Choi, J. Lu, H. O. Blom, P. Pianetta, D. Devine, M. Sendler, and J. P. Chang, "Effects of post-deposition annealing on the material characteristics of ultrathin $HfO_2$ films on silicon," J. of Applied Physics, vol. 97, no. 2, Jan. 2005, pp. 023704-1-7. https://doi.org/10.1063/1.1831543
  8. J. Park, Y. Yoon, and S. Kang, "Structural and optical properties of $HfO_2$ films on Sapphire Annealed in $O_2$ Ambient," J. of Korean Ceramic Society, vol. 53, no. 5, Sept. 2016, pp. 563-567. https://doi.org/10.4191/kcers.2016.53.5.563
  9. P. Lei, S. Guo, J. Zhu, B. Dai, G. Liu, Y. Wang, and J. Han, "Enhanced mechanical properties of $HfO_2$ film by nitrogen doping," Surface Engineering, vol. 32, no. 8, Aug. 2016, pp. 585-588. https://doi.org/10.1080/02670844.2015.1121342
  10. J. Park, S. Kang, and Y. Yoon, "Properties of IZTO thin films deposited on PEN substrates with different working pressures," J. of Korean Ceramic Society, vol. 52, no. 3, May 2015, pp. 224-227. https://doi.org/10.4191/kcers.2015.52.3.224
  11. J. Park, Y. Joung, and S. Kang, "Electrical and Optical Properties of the IZTO Thin Film Deposited on PET substrates with $SiO_2$ Buffer Layer," The Korea Institute of Information and Communication Engineering, vol. 21, no. 3, Mar. 2017, pp. 578-584.
  12. N. Li, Z. T. Liu, L. P. Feng, and R. T. Jia, "Composition and optoelectrical properties of sputtering MoSex films," Surface Engineering, vol. 32, no. 4, Apr. 2016, pp. 299-303. https://doi.org/10.1179/1743294415Y.0000000081
  13. S. B. Zhang, D. W. Zuo, and W. Z. Lu, "Influence of film thickness on structural and optical-switching properties of vanadium pentoxide films," Surface Engineering, vol. 33, no. 4, Apr. 2017, pp. 292-298. https://doi.org/10.1080/02670844.2016.1252897
  14. S. Jing, Y. Bai, F. Qin, and J. Xiao, "Bias effects on AlMgB thin films prepared by magnetron sputtering," Surface Engineering, vol. 33, no. 8, Aug. 2017, pp. 592-596. https://doi.org/10.1080/02670844.2016.1143213
  15. H. Zhao, Z. Ni, and F. Ye, "The structure and mechanical properties of magnetron sputtered VSiN coatings," Surface Engineering, vol. 33, no. 8, Aug. 2017, pp. 585-591. https://doi.org/10.1080/02670844.2016.1139027
  16. W. Bragg and A. Pippard, "The Form Birefringence of Macromolecules," Acta Crystallographica, vol. 6, no. 11-12, Nov. 1953, pp. 865-867. https://doi.org/10.1107/S0365110X53002519