Browse > Article

Synthesis of Titanium Dioxides by Microemulsion Method and Their Photocatalytic Degradation of p-Nitrophenol  

Jung, Won Young (Division of Applied Chemical Engineering, Pukyong National University)
Han, Yeon Hee (Division of Applied Chemical Engineering, Pukyong National University)
Lee, Gun-Dae (Division of Applied Chemical Engineering, Pukyong National University)
Park, Seong Soo (Division of Applied Chemical Engineering, Pukyong National University)
Hong, Seong-Soo (Division of Applied Chemical Engineering, Pukyong National University)
Publication Information
Applied Chemistry for Engineering / v.19, no.3, 2008 , pp. 351-356 More about this Journal
Abstract
Titania nanoparticles were prepared by controlled hydrolysis of titanium tetraisopropoxide (TTIP) in water-in-oil (W/O) and microemulsion stabilized with a nonionic surfactant, N P-10 (Polyoxyethylene Nonylphenol Ether: $C_9H_{19}C_6H_4(OCH_2CH_2)_{10}OH$)). The nanosized particles prepared in W/O microemulsion were characterized by FT-IR, TEM, XRD, TGA, and DTA. In addition, the photocatalytic degradation of p-nitrophenol has been studied by using a batch reactor in the presence of UV light in order to compare the photocatalytic activity of prepared nanosized titania. The nanaosized titania particles calcined at $300{\sim}600^{\circ}C$ showed an anatase structure, but it transformed to a rutile phase above $700^{\circ}C$ of calacination temperature. With an increase of $W_o$ ratio, the crystallite size increased but photocalytic activity decreased. The titania synthesized at $W_o=5$, R = 2, and calcined at $400{\sim}500^{\circ}C$ showed the highest activity on the photocatalytic degradation of p-nitrophenol.
Keywords
nanosized titania; N.P-10; reverse micelle; photocatalytic degradation; p-nitrophenol;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 A. P. Alivisatos, MRS Bull., Aug., 23 (1995)
2 H. Herrig and R. Hempelmann, Mater. Letters, 27, 287 (1996)   DOI   ScienceOn
3 L. Palmisano, V. Augugliaro, M. Schiavello, and A. Sclafani, J. Mol. Catal., 56, 284 (1989)   DOI   ScienceOn
4 A. Sclafani, L. Palmisano, and M. Schiavello, J. Phys. Chem., 94, 829 (1990)   DOI
5 A. Larbot, J. A. Alary, J. P. Fabre, C. Guizard, and L. Cot, Better Ceramics Through Chemistry II, 659 (1986)
6 M. Primet, P. Pichat, and M. V. Mathieu, J. Phys. Chem., 75, 1221 (1971)   DOI
7 K. Osseo-Asare and F. J. Arriagada, in Better Ceramics Through Chemistry III, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Materials Research Society) (1988)
8 T. Loepz, R. Gomez, E. Sanchez, F. Tzompantzi, and L. Vera, J. Sol-Gel Sci. Technol., 22, 99 (2001)   DOI   ScienceOn
9 W.-I. Chang, S.-W. Kang, and K.-R. Lee, J. Korean Ceram. Soc., 35, 594 (1998)
10 M. S. Lee, G. D. Lee, C. S. Ju, K. T Lim, and S. S. Hong, J. Korean Ind. Eng. Chem., 13, 216 (2002)
11 P. D. I. Fletcher, A. M. Howe, and B. H. Robinson, J. Chem. Soc., Faraday Trans. 183, 985 (1987)
12 K. Wolf, A. Yazdani, and P. Yates, J. Air Waste Manage. Assoc., 41, 1055 (1991)   DOI   ScienceOn
13 P. N. K. Kumar, Ph. D. Thesis, University of Twente, 7500 AE Enschede, The Netherlands (1993)
14 A. Sclafani, L. Palmisano, and M. Schiavello, J. Phys. Chem., 94, 829 (1990)   DOI
15 J. H. Fendler, Chem. Rev., 87, 887 (1987)
16 C. Suryanyana and F. H. Froes, Metall. Trans., 23A, 1071 (1992)
17 P. Barnickel, A. Wokaun, W. Sayer, and H.-F. Eicke, J. Colloid Interface Sci., 148, 80 (1991)   DOI   ScienceOn
18 L. Palmisano, V. Augugliaro, M. Schiavello, and A. Sclafani, J. Mol. Catal., 56, 284 (1989)   DOI   ScienceOn
19 C. S. Turchi and D. F. Ollis, J. Catal., 122, 178 (1990)   DOI   ScienceOn
20 B. D. Cullity, Elements of X-Ray Diffraction. Adison-Wesley, Reading, MA (1978)
21 V. Chhabra, V. Pillai, B. K. Mishra, A. Morrone, and D. O. Shah, Langmuir, 11, 33 (1995)