Browse > Article
http://dx.doi.org/10.5229/JKES.2020.23.4.97

Synthesis of CoFe2O4 Nanoparticles as Electrocatalyst for Oxygen Evolution Reaction  

Lee, Jooyoung (Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science)
Kim, Geulhan (Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science)
Yang, Juchan (Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science)
Park, Yoo Sei (Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science)
Jang, Myeong Je (Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science)
Choi, Sung Mook (Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science)
Publication Information
Journal of the Korean Electrochemical Society / v.23, no.4, 2020 , pp. 97-104 More about this Journal
Abstract
One of the main challenges of electrochemical water splitting technology is to develop a high performance, low cost oxygen-evolving electrode capable of substituting a noble metal catalyst, Ir or Ru based catalyst. In this work, CoFe2O4 nanoparticles with sub-44 nmsize of a inverse spinel structure for oxygen evolution reaction (OER) were synthesized by the injection of KNO3 and NaOH solution to a preheated CoSO4 and Fe(NO3)3 solution. The synthesis time of CoFe2O4 nanoparticles was controlled to control particle and crystallite size. When the synthesis time was 6 h, CoFe2O4 nanoparticles had high conductivity and electrochemical surface area. The overpotential at current denstiy of 10 mA/㎠ and Tafel slope of CoFe2O4 (6h) were 395 mV and 52 mV/dec, respectively. In addition, the catalyst showed excellent durability for 18 hours at 10 mA/㎠.
Keywords
Transition Metal; Oxide; Inverse Spinel Structure; Nanoparticle; Oxygen Evolution Reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Cheng and J. Chen, 'Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts', Chem. Soc. Rev., 41, 2172-2192 (2012).   DOI
2 C. Si, Y. Zhang, C. Zhang, H. Gao, W. Ma, L. Lv and Z. Zhang, 'Mesoporous nanostructured spinel-type MFe2O4 (M = Co, Mn, Ni) oxides as efficient bi-functional electrocatalysts towards oxygen reduction and oxygen evolution', Electrochim. Acta, 245, 829-838 (2017).   DOI
3 M. Li, Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Hana and L. Guo, 'Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction', Nanoscale, 7, 8920-8930 (2015).   DOI
4 H. Zeng, P. M. Rice, S. X. Wang and S. Sun, 'ShapeControlled Synthesis and Shape-Induced Texture of MnFe2O4 Nanoparticles', J. am. Chem. Soc., 126, 11458-11459 (2004).   DOI
5 R.N. Singh, J.P. Singh, H. N. Cong and P. Chartier, 'Effect of partial substitution of Cr on electrocatalytic properties ofMn2O4 towards O2 evolution in alkaline medium', Int. J. Hydrog. Energy, 31, 1372-1378 (2006).   DOI
6 J. Bejar, L. A. Contreras, J. L. Garcia, N. Arjona and L. G. Arriaga, 'An advanced three-dimensionally ordered macroporous NiCo2O4 spinel as a bifunctional electrocatalyst for rechargeable Zn-air batteries', J. Mater. Chem. A, 8, 8554-8565 (2020).   DOI
7 X. Wu, Y. Niu, B. Feng, Y. Yu, X. Huang, C. Zhong, W. Hu and C. M. Li, 'Mesoporous Hollow Nitrogen-Doped Carbon Nanospheres with Embedded MnFe2O4/Fe Hybrid Nanoparticles as Efficient Bifunctional Oxygen Electrocatalysts in Alkaline Media', ACS Appl. Mater. Interfaces, 10, 20440-20447 (2018).   DOI
8 Z. Zhang, D. Zhou, S. Zou, X. Bao and X. He, 'One-pot synthesis of MnFe2O4/C by microwave sintering as anefficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions', J. Alloys Compd., 786, 565-567 (2019).   DOI
9 D. M. Fernandes, N. Silva, C. Pereira, C. Moura, J. M. C. S. Magalhaes, B. B. Baeza, I. R. Ramos, A. G. Ruiz, C. D. Matos, C. Freir, 'MnFe2O4@CNT-N as novel electrochemical nanosensor fordetermination of caffeine, acetaminophen and ascorbic acid', Sens. Actuators B Chem., 218, 128-136 (2015).   DOI
10 S. Khilari and D. Pradhan, 'MnFe2O4@nitrogen-doped reduced graphene oxide nanohybrid: an efficient bifunctional electrocatalyst for anodic hydrazine oxidation and cathodic oxygen reduction', Catal. Sci. Technol., 7, 5920-5931 (2017).   DOI
11 W. Bian, Z. Yang, P. Strasser, R. Yang, 'A CoFe2O4/ graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution', J. Power Sources, 250, 196-203 (2014).   DOI
12 M. I. Godinho, M. A. Catarino, M.I. da Silva Pereira, M. H. Mendonc and F. M. Costa, 'Effect of the partial replacement of Fe by Ni and/or Mn on theelectrocatalytic activity for oxygen evolution of the CoFe2O4spineloxide electrod', Electrichim. Acta, 47, 4307-4314 (2002).   DOI
13 W. Yan, X. Cao, J. Tian, C. Jin, K. Ke and R. Yang, 'Nitrogen/sulfur dual-doped 3D reduced graphene oxide networks-supported CoFe2O4with enhanced electrocatalytic activities foroxygen reduction and evolution reactions', Carbon, 99, 195-202 (2016).   DOI
14 M. Peumans, B. V. Meerbeek, Y. Yoshida, P. Lambrechts and G. Vanherle, 'Porcelain veneers bonded to tooth structure: an ultra-morphological FE-SEM examination of the adhesive interface', Dent Mater, 15, 105-119 (1999).   DOI
15 S. T. Hunt, M. Milina, Z. Wang and Y. R. Leshkov, 'Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles', Energy Environ. Sci., 9, 3290-3301 (2016).   DOI
16 R. T. Olsson, M.A. S. Azizi Samir, G. S. Alvarez, L. Belova and V. Strom, 'Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose mano fibrils as templates', Nat. Nanotechnol., 5, 584-588 (2010)   DOI
17 R. Yang, S. He, J. Yi and Q. Hu, 'Nano-scale pore structure and fractal dimension of organic-rich WufengLongmaxi shale from Jiaoshiba area, Sichuan Basin:Investigations using FE-SEM, gas adsorption and helium pycnometry', Mar Pet Geol, 70, 27-45 (2016).   DOI
18 M. Morcrette, Y. Chabre, G. Vaughan, G. Amatucci, J. B. Lerche, S. Patoux, C. Masquelier and J. M. Tarascon, 'In sity X-ray diffraction techniques as a powerful tool to study battery electrode materials', Electrochim. Acta, 47, 3137-3149 (2002).   DOI
19 W. Hu, Y. Wang, X. Hu, Y. Zhou and S. Chen, 'Threedimensional ordered microporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium', J. Mater. Chem., 22, 6010-6016 (2012).   DOI
20 M. R. Fitzsimmons, J. A. Eastman, M. M. Stach and G. Wallner, 'Structural characterization of nanometer-sized crystalline Pd by x-ray-diffraction techniques', Phys. Rev. B, 44, 2452-2460 (1991)   DOI
21 C. Mahala, M. D. Sharma, and M. Basu, '2D Nanostructures of CoFe2O4 and NiFe2O4: Efficient Oxygen Evolution Catalyst', Electrochimi. Acta, 273, 462−473 (2018).   DOI
22 L. Wu, L. Shi, S. Zhou, J. Zhao, X. Miao and J. Guo, Direct Growth of CoFe2 Alloy Strongly Coupling and Oxygen-vacancy-rich CoFe2O4 Porous Hollow Nanofibers: an Efficient Electrocatalyst for Oxygen Evolution Reaction', Energy Thchnol. 6, 2350−2357 (2018).
23 C. Zhang, Sa. Bhoyate, C. Zhao, P. K. Kahol, N. Kostoglou, C. Mitterer , S. J. Hinder, M. A. Baker, G. Constantinides, K. Polychronopoulou, C. Rebholz and R. K. Gupta, 'Electrodeposited Nanostructured CoFe2O4 for Overall Water Splitting and Supercapacitor Applications', Catalysts, 9, 176 (2019).   DOI
24 K. Liu, C. Zhang, Y. Sun, G. Zhang, X. Shen, F. Zou, H. Zhang, Z. Wu, E. C. Wegener, C. J. Taubert, J. T. Miller, Z. Peng, and Y. Zhu, 'High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction', ACS Nano, 12, 158−167 (2018).   DOI
25 J. S. Sagu, D. Mehta, and K. G. U. Wijayantha, 'Electrocatalytic activity of CoFe2O4 thin films prepared by AACVD towards the oxygen evolution reaction in alkaline media', Electrochem. Commun., 87, 1−4 (2018).   DOI
26 S. Sun, H. Li and Z. J. Xu, 'Impact of Surface Area in Evaluation of Catalyst Activity', Joule, 2, 1019-1027 (2018).   DOI
27 T. Shinagawa, Angel T. G. Esparza and K. Takanabe, 'Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion', Sci. Rep., 5, 13801 (2015).   DOI
28 N. D. Leonard, S. Wagner, F. Luo, J. Steinberg, Wen Ju, N. Weidler, H. Wang, U. I. Kramm and P. Strasser, 'Deconvolution of Utilization, Site Density, and Turnover Frequency of Fe-Nitrogen-Carbon Oxygen Reduction Reaction Catalysts Prepared with Secondary N-Precursors, ACS Catal., 8, 1640-1647 (2018).   DOI
29 D. M. F. Santos, C. A. C. Sequeira and J. L. Figueiredo, 'Hydrogen production by alkaline water electrolysis', Quim. Nova, 36, 1176-1193 (2013).   DOI
30 R. Beugre, A. Dorval, L. L. Lavallee, M. Jafari, J. C. Byers, 'Local electrochemistry of nickel (oxy)hydroxide material gradients prepared using bipolar electrodeposition', Electrochim. Acta, 319, 331-338 (2019).   DOI
31 M. M. Rashid, M. K. Al Mesfer, H. Naseem and M. Danish, 'Hydrogen Production by Water Electrolysis: A Review of Alkaline Water Electrolysis, PEM Water Electrolysis and High Temperature Water Electrolysis', Int. J. Eng. Technol., 4, 2249-8958 (2015).
32 E. Rios, J.-L. Gautier, G. Poillerat and P. Chartier, 'Mixed valency spinel oxides of transition metals and electrocatalysis: case of the MnxCo3xO4system', Electrochim. Acta, 44, 1491-1497 (1998).   DOI
33 J. Y. C. Chen, J. T. Miller, J. B. Gerken and S. S. Stahl, 'Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: promotion of activity by a redox-inert metal ion', Energy Environ. Sci., 7, 1382-1386 (2014).   DOI
34 C.-C. Kuo, W.-J. Lan and C.-H. Chen, 'Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metalfree electrocatalysts for sensing hydrogen peroxide', Nanoscale, 6, 334-341 (2014).   DOI
35 T. Audichon, T. W. Napporn, C. Canaff, C. Morais, C. Comminges and K. B. Kokoh, 'IrO2 Coated on RuO2 as Efficient and Stable Electroactive Nanocatalysts for Electrochemical Water Splitting', J. Phys. Chem. C, 120, 2562-2573 (2016).   DOI
36 H. Osgood, S. V. Devaguptapu, H. Xu, J. Cho and G. Wu, 'Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media', Nano Today, 11, 601-625 (2016).   DOI
37 M. O. Tolentino, J. V. Samperio, M. T. Velazquez, J. F. Moreno, L. L. Rojas and R. de G. G. Huerta, 'Bifunctional electrocatalysts for oxygen reduction/evolution reactions derived from NiCoFe LDH materials', J Appl Electrochem, 48, 947-957 (2018).   DOI
38 H. Zhu, S. Zhang, Y. X. Huang, L. Wu and S. Sun, 'Monodisperse MxFe3-xO4 (M = Fe, Cu, Co, Mn) Nanoparticles and Their Electrocatalysis for Oxygen Reduction Reaction', Nano Lett., 13, 2947-2951 (2013).   DOI
39 B. Cui, H. Lin, J.B. Li, J. Yang and J. Tao, 'Core-Ring Structured NiCo2O4 Nanoplatelets: Synthesis, Characterizagtion, and Electrocatalytic Applications', Adv. Funct. Mater., 18, 1440-1447 (2008).   DOI
40 Xue-Feng L., Lin-Fei G., Jia-Wei W., Jun-Xi W., Pei-Qin L. and Gao-Ren L., 'Bimetal-Organic Framework Derived CoFe2O4/C Porous Hybrid Nanorod Arrays as High-Performance Electrocatalysts for Oxygen Evolution Reaction', Adv. Mater., 29, 1604437 (2017)   DOI
41 W.Yan, W. Bian, C. Jin, J. H. Tian and R. Yang, 'An Efficient Bi-functional Electrocatalyst Based on Strongly CoupledCoFe2O4/Carbon Nanotubes Hybrid for Oxygen Reduction and Oxygen Evolution', Electrochim. Acta, 177, 65-72 (2015).   DOI
42 G. Zhum X. Li, Y. Liu, W. Zhu and X. She, 'Activating CoFe2O4electrocatalysts by trace Au for enhanced oxygen evolution activity', Appl. Surf. Sci., 478, 206-212 (2019).   DOI
43 R.N. Singh, B. Lal and M. Malviya, 'Electrocatalytic activity of electrodeposited composite films of polypyrrole and CoFe2O4nanoparticles towards oxygen reduction reaction', Electrochim. Acta, 49, 4605-4612 (2004).   DOI
44 C. Mahala, M. D. Sharma and M. Basu, '2D Nanostructures of CoFe2O4 and NiFe2O4: Efficient Oxygen Evolution Catalyst', Electrochim. Acta, 273, 462-473 (2018).   DOI
45 T. Zhang, Z. Li, L. Wang, Z. Zhang, S. Wang, 'Spinel CoFe2O4supported by three dimensional graphene as high-performance bi-functional electrocatalysts for oxygen reduction and evolution reaction', Int. J. Hydrog. Energy, 44, 1610-1619 (2019).   DOI
46 X. Zhao, Y. Fu, J. Wang, Y. Xu, J. H. Tian and R. Yang, 'Ni-doped CoFe2O4Hollow Nanospheres as Efficient Bifunctional Catalysts', Electrochim. Acta, 201, 172-178 (2016).   DOI
47 K. M. Naik and S. Sampath, 'Two-step oxygen reduction on spinel NiFe2O4catalyst: Rechargeable,aqueous solution- and gel-based, Zn-air batteries', Electrochim. Acta, 292, 268-275 (2018).   DOI
48 S. Du, Z. Ren, J. Zhang, J. Wu, W. Xi, J. Zhub and H. Fu, 'Co3O4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting', Chem. Commun., 51, 8066-8069 (2015).   DOI
49 N. B. Halck, V. Petrykin, P. Krtil and J. Rossmeis, 'Beyond the volcano limitations in electrocatalysis - oxygen evolution reaction', Phys. Chem. Chem. Phys., 16, 13682-13688 (2014).   DOI