• 제목/요약/키워드: Crystal plasticity

검색결과 113건 처리시간 0.025초

Study on the irradiation effect of mechanical properties of RPV steels using crystal plasticity model

  • Nie, Junfeng;Liu, Yunpeng;Xie, Qihao;Liu, Zhanli
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.501-509
    • /
    • 2019
  • In this paper a body-centered cubic(BCC) crystal plasticity model based on microscopic dislocation mechanism is introduced and numerically implemented. The model is coupled with irradiation effect via tracking dislocation loop evolution on each slip system. On the basis of the model, uniaxial tensile tests of unirradiated and irradiated RPV steel(take Chinese A508-3 as an example) at different temperatures are simulated, and the simulation results agree well with the experimental results. Furthermore, crystal plasticity damage is introduced into the model. Then the damage behavior before and after irradiation is studied using the model. The results indicate that the model is an effective tool to study the effect of irradiation and temperature on the mechanical properties and damage behavior.

강소성 유한 요소 해석에 연계한 Rate-Independent 결정소성학을 이용한 3차원 알루미늄 압출재에서의 변형 집합 조직 예측 (Prediction of Texture Evolution of Aluminum Extrusion Processes using Rigid-Plastic Finite Element Method based on Rate-Independent Crystal Plasticity)

  • 김경진;양동열;윤정환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.485-488
    • /
    • 2005
  • Most metals are polycrystalline material whose deformation is dominated by the slip system. During the deformation process, orientation of slip systems is rearranged with preferred orientations, leading to deformation-induced crystallographic texture which is called deformation texture. Depending on the texture development, the property of material can be changed. The rate-independent crystal plasticity which is based on the Schmid law as a yield function causes a non-uniqueness in the choice of active slip systems. In this work, to avoid the slip system ambiguity problem, rate-independent crystal plasticity model based on the smooth yield surface with rounded-off corners is adopted. In order to simulate the polycrystalline material under plastic deformation, we employ the Taylor model of polycrystal behavior that all the grains are assumed to be subjected to the macroscopic velocity gradient. Rigid-plastic finite element program based on this rate-independent crystal plasticity is developed to predict the grain-level deformation behavior of FCC metals during metal forming processes. In the finite element calculation, one integration point is considered as a crystalline aggregate which has a number of crystals. Macroscopic behavior of material can be deduced from the behavior of aggregates. As applications, the extrusion processes are simulated and the changes of mechanical properties are predicted.

  • PDF

Interaction fields based on incompatibility tensor in field theory of plasticity-Part I: Theory-

  • Hasebe, Tadashi
    • Interaction and multiscale mechanics
    • /
    • 제2권1호
    • /
    • pp.1-14
    • /
    • 2009
  • This paper proposes an interaction field concept based on the field theory of plasticity. Relative deformation between two arbitrary scales, e.g., macro and micro fields, is defined which can be implemented in the crystal plasticity-based constitutive framework. Differential geometrical quantities responsible for describing dislocations and defects in the interaction field are obtained, based on which dislocation density and incompatibility tensors are further derived. It is shown that the explicit interaction exists in the curvature or incompatibility tensor field, whereas no interaction in the torsion or dislocation density tensor field. General expressions of the interaction fields over multiple scales with more than three scale levels are derived and implemented into the present constitutive equation.

결정소성학을 이용한 교차압연시의 집합조직과 소성이방성의 예측 (Predictions of Texture Evolution and Plastic Anisotropy by Cross Rolling Based on Crystal Plasticity)

  • 김동수;원성연;손현성;김영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.309-312
    • /
    • 2001
  • FEM simulating system of the cross-rolling texture formation offers a systematic and efficient way of exploring the relationship between the process variables and the state of plastic anisotropy of sheet product. Cross-rolled sheets possess higher average plastic strain ratios and lower planer anisotropy than those of the straight-rolled sheets. The employed model is a finite-element polycrystal model which each element used in FEM is assumed to be a crystal having different orientation by Takahashi. Texture development, deformation textures due to cross-rolling are predicted for face-centered cubic sheet metal. Crystal orientations are assigned on the basis of the pole figures obtained by X-ray diffraction. Development of anisotropy during cross rolling of an fcc sheet material is predicted theoretically with respected to flow stress and R-value in tensile test.

  • PDF

나노 인덴테이션에 의한 나노재료의 경도예측 (1) 나노 인덴테이션에서 압자 밑 재료의 나노거동 (Nano-behavior of material beneath an indenter in nanoindentation)

  • 김진;박준원;김영석;이승섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.111-115
    • /
    • 2003
  • Nanoindentation is simply an indentation test in which the length scale of the penetration is measured in nanometres rather than microns or millimetres, the latter being common in conventional hardness tests. Three-dimensional molecular dynamics simulations have been conducted to evaluate the nanoindentation test. Molecular dynamics simulations were carried out on single crystal copper by varying crystal orientations to investigate nano-behavior of material beneath an indenter in nanoindentation. Morse potential function was used as an interatomic force between indenter and thin film. The result of the simulation shows that crystal orientation significantly influenced the slip system, dislocation nucleation and dislocation behavior.

  • PDF

알루미늄 판재의 이방성거동 예측을 위한 현상학적 모델과 결정소성학적 모델의 비교연구 (Study on Phenomenological and Crystal Plasticity Models to Predict Anisotropic Behaviors for Aluminum Alloy Sheets)

  • 정완진;윤정환
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.574-580
    • /
    • 2006
  • Anisotropy has an important effect on the strain distribution in aluminum alloy sheet forming, and it is closely related to the thinning and formability of sheet metals. Thus, the anisotropy of the material should be properly considered for the realistic analyses of aluminum sheet forming processes. For this, anisotropy can be approached in two different scales: phenomenological and microstructural (polycrystal) models. Recent anisotropic models (Yld2000-2d; Barlat et al.[1] 2003, Cuitino et al.[2] 1992) were employed in this work. For the simulation using shell element, the method which can impose plane stress condition in the polycrystal model is developed. Lankford values and yield stress ratios are calculated along various directions. As planar anisotropic behavior, a circular cup deep drawing simulation was carried out to compare the phenomenological and microstructure models in terms of earing profile.

석출 강화된 단결정의 소성변형에 관한 모델링 (Modeling the Plastic Deformation of Crystals with Thin Precipitates)

  • 김준형;한정석;강태진;정관수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.155-158
    • /
    • 2005
  • Precipitates, present in most commercial alloys, can have a strong influence on strength and hardening behavior of a single crystal. The effect of thin precipitates on the anisotropy of initial slip resistance and hardening behavior of crystals is modeled in this article. For the convenience of the computational derivation and implementation, the material formulation is given in the unrelated intermediate configuration mapped by the plastic part of the deformation gradient. Material descriptions for the considered two phased aggregates consisting in lattice hardening as well as isotropic hardening and kinematic hardening are suggested. Numerical simulations of various loading cases are presented to discuss and assess the performance of the suggested model.

  • PDF

결정 소성학과 강소성 유한요소해석을 연계한 ECAE 공정에서의 변형 집합 조직 발달에 대한 연구 (Prediction of Texture Evolution in Equal Channel Angular Extrusion (ECAE) Using Rate-Independent Crystal Plasticity with Rigid-Plastic Finite Element Method)

  • 김경진;윤정환;양동열
    • 한국정밀공학회지
    • /
    • 제32권11호
    • /
    • pp.937-944
    • /
    • 2015
  • Recently, the change of mechanical properties and microstructural evolution during severe plastic deformation (SPD), such as Equal Channel Angular Extrusion (ECAE), has been the subject of intensive investigation because of the unique physical and mechanical properties of severely deformed materials. In this study, two types of ECAE processes were considered, dies with intersection angles ${\Phi}$ of $90^{\circ}$ and $120^{\circ}$, using experiments and simulations. The decoupled method, in which the rigid-plastic finite element method is incorporated with the rate-independent crystal plasticity model, was applied to predict the texture evolution in commercially pure aluminum during the ECAE processes with $120^{\circ}$ and $90^{\circ}$ dies. The simulated textures were compared with a measured texture via an EBSD OIM analysis. The comparison showed that the simulated textures generally were in good agreement with the experimentally measured texture.

나노스크래치 공정에서 단결정 실리론 및 파이렉스 7740 의 나노변형거동 (Nanodeformation Behaviors of the Single Crystal Silicon and the Pyrex glass 7740 during Nanoscratch)

  • 신용래;윤성원;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.363-366
    • /
    • 2003
  • In nanomachining processes, chemical effects are more dominant factor compared with physical deformation. For example, during the nanoscratch on a silicon surface in the atmosphere, micro protuberances are formed due to the mechanochemical reaction between the diamond tip and the surface. On the contrary, in case of chemically stable materials, such as ceramics or glasse, the surface protuberance are not formed. The purpose of this study is to understand effects of the mechanochemical reaction between tip and surfaces on deformation behaviors of hard-brittle materials. Nanometerscale elasoplastic deformation behavior of single crystal silicon (100) was characterized with the surface protuberance phenomena, and compared with that of borosilicate (Pyrex glass 7740).

  • PDF

The Effect of Cold Forging on Carburizing Microstructure

  • Yanjun Huo;Baixuan Liu;Qingpo Xi;Hua Liu
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.40-42
    • /
    • 2003
  • The aim of this paper is to illustrate which factors influence the martensite grain fineness made by subsequently surface carburizing of extruded component. The effects of surface decarburizing by annealing, residual stress, initial microstructure and crystal oriental made by forward extrusion were taken into account. The available evidence suggests that the residual stress inside crystal or the crystal orientation is the main factor that results coarse martensite while cold extruded component was treated by carburizing.

  • PDF