Browse > Article
http://dx.doi.org/10.1016/j.net.2018.10.020

Study on the irradiation effect of mechanical properties of RPV steels using crystal plasticity model  

Nie, Junfeng (Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University)
Liu, Yunpeng (Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University)
Xie, Qihao (Data Science and Information Technology Research Center, Tsinghua-Berkeley Shenzhen Institute)
Liu, Zhanli (Applied Mechanics Lab., School of Aerospace Engineering, Tsinghua University)
Publication Information
Nuclear Engineering and Technology / v.51, no.2, 2019 , pp. 501-509 More about this Journal
Abstract
In this paper a body-centered cubic(BCC) crystal plasticity model based on microscopic dislocation mechanism is introduced and numerically implemented. The model is coupled with irradiation effect via tracking dislocation loop evolution on each slip system. On the basis of the model, uniaxial tensile tests of unirradiated and irradiated RPV steel(take Chinese A508-3 as an example) at different temperatures are simulated, and the simulation results agree well with the experimental results. Furthermore, crystal plasticity damage is introduced into the model. Then the damage behavior before and after irradiation is studied using the model. The results indicate that the model is an effective tool to study the effect of irradiation and temperature on the mechanical properties and damage behavior.
Keywords
Crystal plasticity; Dislocation evolution; Irradiation effect; Damage; RPV steel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations, Acta Mater. 54 (8) (2006) 2169-2179.   DOI
2 L. Vincent, M. Libert, B. Marini, et al., Towards a modelling of RPV steel brittle fracture using crystal plasticity computations on polycrystalline aggregates, J. Nucl. Mater. 406 (2010) 91-96.   DOI
3 Fabien Onimus, Jean-Luc Bechade, A polycrystalline modeling of the mechanical behavior of neutron irradiated zirconium alloys, J. Nucl. Mater. 384 (2009) 163-174.   DOI
4 Xiazi Xiao, Dmitry Terentyev, Long Yu, et al., Modelling irradiation-induced softening in BCC iron by crystal plasticity approach, J. Nucl. Mater. 466 (2015) 312-315.   DOI
5 E. Schmid, W. Boas, Plasticity of crystals, Aeronaut. J. 54 (479) (1950) 353-719.
6 E.P. Busso, Cyclic Deformation of Monocrystalline Nickel Aluminide and High Temperature Coatings, Doctoral Thesis, Massachusetts Institute of Technology, Cambridge, 2005.
7 E. Orowan, Zur Kristallogr, Z. Phys. 89 (3/4) (1934) 327-343.
8 U. Essmann, H. Mughrabi, Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities, Philos. Mag. A 40 (1979) 731.   DOI
9 A. Arsenlis, D.M. Parks, Modeling the evolution of crystallographic dislocation density in crystal plasticity, J. Mech. Phys. Solid. 50 (2002) 1979-2009.   DOI
10 U.F. Kocks, A statistical theory of flow stress and work-hardening, Philos. Mag. 13 (1966) 541-566.   DOI
11 Y. Estrin, H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Metall. 32 (1984) 57-70.   DOI
12 C. Deo, C. Tome, R. Lebensohn, et al., Modeling and simulation of irradiation hardening in structural ferritic steels for advanced nuclear reactors, J. Nucl. Mater. 377 (1) (2008) 136-140.   DOI
13 Anirban Patra, L. David, McDowell, Crystal plasticity-based constitutive modelling of irradiated bcc structures, Philos. Mag. A 92 (7) (2011) 1-27.
14 Hibbitt Karlsson, Sorensen, ABAQUS/Standard User's Manuals., v6.5, 2005.
15 Yun Lin, Guang-sheng Ning, Chang-yi Zhang, et al., Mechanical property of China A508-3 steel after neutron irradiation, Energy Sci. Technol. 50 (02) (2016) 204-207.
16 R.A. Johnson, D.J. Oh, Analytic embedded atom method model for BCC metals, J. Mater. Res. 4 (5) (1989) 1195-1201.   DOI
17 D. Brunner, J. Diehl, Strain-rate and temperature dependence of the tensile flow stress of high-purity ${\alpha}$-iron above 250 K (regime I) studied by means of stress-relaxation tests, Phys. Status Solidi Appl. Res. 124 (1) (1991) 155-170.   DOI
18 W.A. Spitzig, A.S. Keh, The role of internal and effective stresses in the plastic flow of iron single crystals, Metall. Mater. Trans. B 1 (12) (1970) 3325-3331.
19 X.M. Bai, H. Ke, Y. Zhang, et al., Modeling copper precipitation hardening and embrittlement in a dilute Fe-0.3at.%Cu alloy under neutron irradiation, J. Nucl. Mater. 495 (2017) 442-454.   DOI
20 M.F. Ashby, Mechanisms of deformation and fracture, Adv. Appl. Mech. 23 (1983) 117-177.   DOI
21 Feng Lu, Ke-shi Zhang, Guang Zhang, et al., Anisotropic damage model under continuum slip crystal plasticity theory for single crystals, Int. J. Solid Struct. 39 (20) (2002) 5279-5293.   DOI
22 P. Zhang, M. Karimpour, D. Balint, et al., A controlled Poisson Voronoi tessellation for grain and cohesive boundary generation applied to crystal plasticity analysis[J], Comput. Mater. Sci. 64 (2012) 84-89.   DOI
23 E. Meslin, M. Lambrecht, M. Hernandez-Mayoral, et al., Characterization of neutron-irradiated ferritic model alloys and a RPV steel from combined APT, SANS, TEM and PAS analyses, J. Nucl. Mater. 406 (1) (2009) 73-83.   DOI
24 Junfeng Nie, Zhenrui Tang, et al., Crystal plasticity constitutive model for BCC based on the dislocation density[J], J. Tsinghua Univ. 57 (2017) 780-784.
25 J.W. Hutchinson, Plastic stress-strain relations of F.C.C polycrystalline metals hardening according to Taylor's rule[J], J. Mech. Phys. Solid. 12 (1) (1964) 11-24.   DOI
26 Lemaitre, A Course on Damage Mechanics, Springer-Verlag, 1996.
27 Zhao-liang Wang, The Research of Inhomogenous Plastic Deformation and Damage of Metal Materials, Master's Thesis, Guangxi University, Nanning, 2016.
28 Y. Estrin, H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Metall. 32 (1) (1984) 57-70.   DOI
29 S. A Maloy, M. R James, G. Willcutt, et al., The mechanical properties of 316L/304L stainless steels, Alloy 718 and Mod 9Cr-1Mo after irradiation in a spallation environment, J. Nucl. Mater. 296 (1-3) (2001) 119-128.   DOI
30 T. Takeuchi, A. Kuramoto, J. Kameda, et al., Effects of chemical composition and dose on microstructure evolution and hardening of neutron-irradiated reactor pressure vessel steels, J. Nucl. Mater. 402 (2/3) (2010) 93-101.   DOI
31 M.K. Miller, M.G. Burke, An atom probe field ion microscopy study of neutronirradiated pressure vessel steels, J. Nucl. Mater. 195 (1992) 68-82.   DOI
32 R. Hill, J.R. Rice, Constitutive analysis of elastic-plastic crystals at arbitrary strain, J. Mech. Phys. Solid. 20 (6) (1972) 401-403.   DOI
33 D. Brimbal, B. Decamps, A. Barbu, et al., Dual-beam irradiation of ${\alpha}$-iron: heterogeneous bubble formation on dislocation loops, J. Nucl. Mater. 418 (1) (2011) 313-315.   DOI
34 C. Domain, C.S. Becquart, L. Maplerba, Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach, J. Nucl. Mater. 335 (1) (2004) 121-145.   DOI
35 G.I. Taylor, Plastic strain in metals, J. Inst. Met. 62 (1938) 307-324.
36 R.J. Asaro, Micro mechanics of crystals and polycrystals, Adv. Appl. Mech. 23 (8) (1983) 11-15.
37 D. Peirce, C.F. Shih, A. Needleman, A tangent modulus method for rate dependent solids, Comput. Struct. 18 (5) (1984) 875-887.   DOI
38 F.T. Meissornnier, E.P. Busso, N.P. O'Dowd, Finite element implementation of a generalised non-local rate-dependent crystallographic formulation for finite strains, Int. J. Plast. 17 (2001) 601-640.   DOI