• 제목/요약/키워드: Crystal grain size

검색결과 293건 처리시간 0.028초

An Electron Microscopic Investigation of the Structure of Thin Film Tin Oxide Material

  • Jeon, Eok-Gui;Choy, Jin-Ho;Choi, Q.-won;Kim, Ha-Suck
    • Bulletin of the Korean Chemical Society
    • /
    • 제6권5호
    • /
    • pp.304-308
    • /
    • 1985
  • Morphological structure of tin oxide thin films was examined by transmission electron microscopy. TEM samples were prepared by chemical etching in hydrogen fluoride solution: firstly floating for 2-3 minutes in acid solution, then suspending on water found to be useful for the preparation of TEM samples. Electron micrographs showed the size of grains of the tin oxide crystal was dependent upon the temperature of the film preparation. Dopant concentration and heating time also influence the grain size. The resistivity of tin oxide material was explained by grain size and grain boundaries in a limited temperature and dopant concentration ranges.

Ni-Fe/Co-Fe/Mn-Ir/Cu/buffer/Si 다층박막의 교환이방성에 관한 연구 (A study on the exchange anisotropy of Ni-Fe/Co-Fe/Mn-Ir/Cu/buffer/Si multialyers)

  • 윤성용;노재철;전동민;임흥순;서수정
    • 한국결정성장학회지
    • /
    • 제10권1호
    • /
    • pp.36-41
    • /
    • 2000
  • 본 실험에서는 D.C magnetron sputtering을 사용하여 Ni-Fe/Co-Fe/Mn-Ir/Cu/buffer/Si 다층박막의 교환이방성에 관하여 연구하였다. 일반적인 Ni-Fe/Mn-Ir/buffer(Cu)/Si의 다층박막 구조는 낮은 교환결합 자계에 의하여 강자성체를 완전히 고착시키지 못한다. 따라서 Ni-Fe/Mn-Ir/buffer/Si 다층박막의 $H_{ex}$를 증가시키기 위해 하지층으로 Cu/Ta을 사용하여 Mn-Ir막의 결정립 부피를 증가시키고 Ni-Fe.Mn-Ir계면에 Co-Fe을 삽입하여 반강자성체/강자성체 계면에서의 epitaxy 경향을 향상시켜 2배 이상의 $H_{ex}$의 증가를 얻을 수 있었다. 또한 ferromagnete/Mn-Ir/buffer/Si의 다층박막 구조에서는 Mn-Ir거 두께에 따른 He일 변화 거동은 Mn-Ir/ferromagnete/buffer/Si다층박막구조와는 다른데 이와 같은 이유는 적층순서에 따라서 반강자성체 결정립의 부피분포와 계면에서의 교환결합 에너지가 차이가 나기 때문인 것으로 사료된다.

  • PDF

유도결합 플라즈마 파워가 VN 코팅막의 미세구조, 결정구조 및 기계적 특성에 미치는 영향에 관한 연구 (Effect of Inductively Coupled Plasma on the Microstructure, Structure and Mechanical Properties of VN Coatings)

  • 전성용;이소연
    • 한국표면공학회지
    • /
    • 제49권4호
    • /
    • pp.376-381
    • /
    • 2016
  • The effects of ICP (Inductively Coupled Plasma) power, ranging from 0 to 200 W, on the crystal structure, microstructure, surface roughness and mechanical properties of magnetron sputtered VN coatings were systematically investigated with FE-SEM, AFM, XRD and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of VN coatings. With the increasing of ICP power, coating microstructure evolves from a porous columnar structure to a highly dense one. Average crystal grain size of single phase cubic fcc VN coatings was decreased from 10.1 nm to 4.0 nm with increase of ICP power. The maximum hardness of 28.2 GPa was obtained for the coatings deposited at ICP power of 200 W. The smoothest surface morphology with Ra roughness of 1.7 nm was obtained from the VN coating sputtered at ICP power of 200 W.

고압환경에서의 결정 크기에 원시료의 상이 미치는 영향: 비정질 시료와 나노파우더를 이용한 시료의 결정 크기 비교 (The Effect of Phases of Starting Materials on the Grain Size at High Pressure: the Comparison of Grain Size in the Samples Using Glass and Nano Powder as Starting Materials)

  • 김은정;알레시오 잔도나;타케히코 히라가;사나에 고이즈미;노부요시 미야지마;토모오 카추라;소병달
    • 광물과 암석
    • /
    • 제36권3호
    • /
    • pp.213-220
    • /
    • 2023
  • 본 연구에서는 고압 환경에서 합성된 결정 입자의 크기에 원시료(starting materials)의 상(phase)이 미치는 영향을 확인했다. 상이 다른 두 가지 원시료인 비정질 시료와 나노파우더 시료를 이용해 알루미늄이 부화된 고압의 환원환경에서 삼원계 시스템인 브리지마나이트-페리클레이스-칼슘 페라이트(calcium ferrite)상의 MgAl2O4을 합성했다. 시료는 40 GPa 2000 K의 압력온도 조건에서 20 시간 동안 가열하여 합성했다. 합성된 시료는 비정질 시료를 이용한 경우 입자 크기가 50-200 nm였으며, 나노파우더를 이용한 경우 ~500 nm로 나타났다. 이러한 차이는 1) 시료가 합성된 2000 K의 온도가 낮아 비정질 시료의 경우 결정 성장보다 결정핵 성장이 더 우세하게 나타났거나 2) 시료에 존재할 수 있는 산화 환원반응 상태의 차이로 생각된다. 추후 다원계 시스템에 대한 고압 실험을 수행할 때 비정질 시료보다 나노파우더를 원시료로 이용하는 것이 결정 성장에서 더 유리할 것으로 생각된다.

용융드래그방법으로 제작한 마그네슘합금 박판의 특성에 미치는 기본적인 공정조건 확립 (Establishment of Fundamental Process Conditions on Properties of Magnesium Alloy Thin Plates Fabricated by the Melt Drag Method)

  • 한창석;이찬우
    • 한국재료학회지
    • /
    • 제32권7호
    • /
    • pp.326-331
    • /
    • 2022
  • AZ31 magnesium alloy was used to manufacture a thin plate using a melt drag method. The effects of roll speed, molten metal temperature, and molten metal height, which are the basic factors of the melt drag method, on the surface shape, the thickness of the thin plate, Vickers hardness, and microstructure of the thin plate were investigated. It was possible to manufacture AZ31 magnesium alloy thin plate at the roll speed range of 1 to 90 m/min. The thickness of the thin plate, manufactured while changing only the roll speed, was about 1.8 to 8.8 mm. The shape of the solidified roll surface was affected by two conditions, the roll speed and the molten metal height, and the Vickers hardness of the manufactured magnesium alloy thin plate value ranged from Hv38~Hv60. The microstructure of the thin plate produced by this process was an equiaxed crystal and showed a uniform grain size distribution. The grain size was greatly affected by the contact state between the molten metal and the solidification roll, and the amount of reactive solids and liquids scraped at the same time as the thin plate. The average grain size of the thin plate fabricated in the range of these experimental conditions changed to about 50-300 ㎛.

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • 장진녕;이동혁;소현욱;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

BaTiO3에서 Dy2O3 첨가가 결정구조, 입자성장 및 유전특성에 미치는 영향 (The effect of Dy2O3 addition on crystal structure, grain growth, and dielectric properties in BaTiO3)

  • 안원기;최문희;김민기;문경석
    • 한국결정성장학회지
    • /
    • 제32권4호
    • /
    • pp.136-142
    • /
    • 2022
  • Dy2O3 첨가량에 따른 BaTiO3의 결정구조, 입자성장 거동 및 유전특성에 대해 연구하였다. 고상합성법으로 (100-x) BaTiO3-xDy2O3(mol%, x = 0, 0.5, 1.0, 2.0) 비율로 합성하고, 공기 중 1250℃에서 2시간 동안 소결하였다. Dy2O3가 첨가되면서 소결체의 결정구조는 정방정계 구조에서 입방정계 구조로 전이되어 tetragonality(c/a)가 감소하였다. 또한, Dy2O3가 첨가 시 Ba12Dy4.67Ti8O35은 이차상이 확인되었다. Dy2O3의 첨가량이 증가할수록 소결 후 평균입자의 크기가 감소하고 비정상 입자성장 거동을 보였다. 이를 통해 Dy2O3가 첨가된 BaTiO3의 입자성장은 이차원 핵생성 및 성장에 의해 입자성장이 일어나고 계면 반응이 지배적인 것으로 판단할 수 있다. 또한, 결정구조 및 미세구조와 유전특성과의 상관관계에 대해서 고찰하였다.

Reorientation of Colloidal Crystalline Domains by a Thinning Meniscus

  • Im, Sang-Hyuk;Park, O-Ok
    • Macromolecular Research
    • /
    • 제12권2호
    • /
    • pp.189-194
    • /
    • 2004
  • When water is evaporated quickly from a water-based colloidal suspension, colloidal particles protrude from the water surface, distorting it and generating lateral capillary forces between the colloidal particles. The protruded colloidal particles are then assembled into ordered colloidal crystalline domains that float on the water surface on account of their having a lower effective density than water. These colloidal crystal domains then assemble together by lateral capillary force and convective flow; the generated colloidal crystal has grain boundaries. The single domain size of the colloidal crystal could be controlled, to some extent, by changing the rate of water evaporation, but it seems very difficult to fabricate a single crystal over a large area of the water's surface without reorienting each colloidal crystal domain. To reorient such colloidal crystal domains, a glass plate was dipped into the colloidal suspension at a tilted angle because the meniscus (airwaterglass plate interface) is pinned and thinned by further water evaporation. The thinning meniscus generated a shear force and reoriented the colloidal crystalline domains into a single domain.

Interaction fields based on incompatibility tensor in field theory of plasticity-Part II: Application-

  • Hasebe, Tadashi
    • Interaction and multiscale mechanics
    • /
    • 제2권1호
    • /
    • pp.15-30
    • /
    • 2009
  • The theoretical framework of the interaction fields for multiple scales based on field theory is applied to one-dimensional problem mimicking dislocation substructure sensitive intra-granular inhomogeneity evolution under fatigue of Cu-added steels. Three distinct scale levels corresponding respectively to the orders of (A)dislocation substructures, (B)grain size and (C)grain aggregates are set-up based on FE-RKPM (reproducing kernel particle method) based interpolated strain distribution to obtain the incompatibility term in the interaction field. Comparisons between analytical conditions with and without the interaction, and that among different cell size in the scale A are simulated. The effect of interaction field on the B-scale field evolution is extensively examined. Finer and larger fluctuation is demonstrated to be obtained by taking account of the field interactions. Finer cell size exhibits larger field fluctuation whereas the coarse cell size yields negligible interaction effects.

Poly-Si TFT Technology

  • Noguchi, Takashi;Kim, D.Y.;Kwon, J.Y.;Park, Y.S.
    • 인포메이션 디스플레이
    • /
    • 제5권1호
    • /
    • pp.25-30
    • /
    • 2004
  • Poly-Si TFT(Thin Film Transistor) technology are reviewed and discussed. Poly-Si TFTs fabricated on glass using low-temperature process were studied extensively for the application to LCD (Liquid Crystal Display) as well as to OLED(Organic Light Emitting Diode) Display. Currently, one of the application targets of the poly-Si TFT is emphasized on the highly functional SOG(System on Glass). Improvement of device characteristics such as an enhancement of carrier mobility has been studied intensively by enlarging the grain size. Reduction of the voltage and shrinkage of the device size are the trend of AM FPD(Active Matrix Flat Panel Display) as well as of Si LSI, which will arise a peculiar issue of uniformity for the device performance. Some approaches such as nucleation control of the grain seed or lateral grain growth have been tried, so far.