DOI QR코드

DOI QR Code

The Effect of Phases of Starting Materials on the Grain Size at High Pressure: the Comparison of Grain Size in the Samples Using Glass and Nano Powder as Starting Materials

고압환경에서의 결정 크기에 원시료의 상이 미치는 영향: 비정질 시료와 나노파우더를 이용한 시료의 결정 크기 비교

  • Eun Jeong Kim (Yellow Sea Institute of Geoenvironmental Sciences laboratory, Kongju National University) ;
  • Alessio Zandona (Conditions Extremes et Materiaux: Haute Temperature et Irradiation, The French National Centre for Scientific Research) ;
  • Takehiko Hiraga (Earthquake Research Institute, University of Tokyo) ;
  • Sanae Koizumi (Earthquake Research Institute, University of Tokyo) ;
  • Nobuyoshi Miyajima (Bayerisches Geoinstitut, Universitat Bayreuth) ;
  • Tomoo Katsura (Bayerisches Geoinstitut, Universitat Bayreuth) ;
  • Byung-Dal So (Department of Geophysics, Kangwon National University)
  • Received : 2023.09.11
  • Accepted : 2023.09.26
  • Published : 2023.09.30

Abstract

In this study, we report the effect of starting materials on the grain size in a multi-component system at high pressure experiments. We used two different starting materials, glass and nano powders, to synthesize bridgmanite in the reduced conditions in the presence of calcium-ferrite-phase MgAl2O4 to compared the grain size of synthesized samples. After synthesizing the sample at 40 GPa, 2000 K for 20 hrs, the sample from glass showed the grain size of 50-200 nm whereas the one from nano powders has ~500 nm of grains. This difference may come from 1) the temperature of 2000 K which is low enough for glass starting materials to make more crystal nucleis than to grow crystal size or 2) the possible difference in the redox state of starting materials. It is suggested that the using of nano powders is better to synthesize bigger grains in high pressure experiments with multi-component systems rather than using glass starting materials.

본 연구에서는 고압 환경에서 합성된 결정 입자의 크기에 원시료(starting materials)의 상(phase)이 미치는 영향을 확인했다. 상이 다른 두 가지 원시료인 비정질 시료와 나노파우더 시료를 이용해 알루미늄이 부화된 고압의 환원환경에서 삼원계 시스템인 브리지마나이트-페리클레이스-칼슘 페라이트(calcium ferrite)상의 MgAl2O4을 합성했다. 시료는 40 GPa 2000 K의 압력온도 조건에서 20 시간 동안 가열하여 합성했다. 합성된 시료는 비정질 시료를 이용한 경우 입자 크기가 50-200 nm였으며, 나노파우더를 이용한 경우 ~500 nm로 나타났다. 이러한 차이는 1) 시료가 합성된 2000 K의 온도가 낮아 비정질 시료의 경우 결정 성장보다 결정핵 성장이 더 우세하게 나타났거나 2) 시료에 존재할 수 있는 산화 환원반응 상태의 차이로 생각된다. 추후 다원계 시스템에 대한 고압 실험을 수행할 때 비정질 시료보다 나노파우더를 원시료로 이용하는 것이 결정 성장에서 더 유리할 것으로 생각된다.

Keywords

Acknowledgement

본 연구를 수행하기 위해 시료의 연마편을 제작해준 R. Njul에게 감사드립니다. 본 연구는 독일 연구재단의 연구비 [Deutsche Forschungsgemeinschaft (DFG) (KA3434/3-1, KA3434/7-1, KA3434/8-1, KA3434/9-1, KA3434/12-1)] 및 유럽 연구 위원회(European Research Council, ERC)의 연구비[유럽연합 Horizon 2020연구 및 혁신프로그램(Proposal 787 527)], 한국연구재단의 기초연구실 지원사업(NRF-2022R1A4A3027001), 한국연구재단 중견연구자지원사업(2022R1A2C1011615)의 지원으로 연구를 수행했습니다.

References

  1. Chanyshev, A. et al., 2022, Depressed 660-km discontinuity caused by akimotoite-bridgmanite transition. Nature, 601(7891), 69-73. https://doi.org/10.1038/s41586-021-04157-z
  2. Czekay, L., Miyajima, N. and Frost, D., 2023, Al, Si diffusion in bridgmanite to estimate the Earth's lower mantle rheology, EGU General Assembly 2023, Vienna, Austria.
  3. Fei, H. et al., 2023, Variation in bridgmanite grain size accounts for the mid-mantle viscosity jump. Nature, 620(7975), 794-799.
  4. Fei, H., Faul, U. and Katsura, T., 2021, The grain growth kinetics of bridgmanite at the topmost lower mantle. Earth and Planetary Science Letters, 561, 116820.
  5. Frost, D.J. et al., 2004, Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature, 428(6981), 409-412. https://doi.org/10.1038/nature02413
  6. Ghosh, D.B. and Karki, B.B., 2011, Diffusion and viscosity of Mg2SiO4 liquid at high pressure from first-principles simulations. Geochimica et Cosmochimica Acta, 75(16), 4591-4600. https://doi.org/10.1016/j.gca.2011.05.030
  7. Ishii, T. et al., 2019a, Sharp 660-km discontinuity controlled by extremely narrow binary post-spinel transition. Nature Geoscience, 12(10), 869-872. https://doi.org/10.1038/s41561-019-0452-1
  8. Ishii, T., Liu, Z. and Katsura, T., 2019b, A breakthrough in pressure generation by a Kawai-type multi-anvil apparatus with tungsten carbide anvils. Engineering, 5(3), 434-440. https://doi.org/10.1016/j.eng.2019.01.013
  9. Ito, E., 2006, Sintered diamond multi anvil apparatus and its application to mineral physics. Journal of Mineralogical and Petrological Sciences, 101(3), 118-121. https://doi.org/10.2465/jmps.101.118
  10. Ito, E. et al., 2010, Pressure generation and investigation of the post-perovskite transformation in MgGeO3 by squeezing the Kawai-cell equipped with sintered diamond anvils. Earth and Planetary Science Letters, 293(1), 84-89. https://doi.org/10.1016/j.epsl.2010.02.023
  11. Ito, Y. and Toriumi, M., 2007, Pressure effect of self-diffusion in periclase (MgO) by molecular dynamics. Journal of Geophysical Research: Solid Earth, 112(B4).
  12. Kilinc, A., Carmichael, I.S.E., Rivers, M.L. and Sack, R.O., 1983, The ferric-ferrous ratio of natural silicate liquids equilibrated in air. Contributions to Mineralogy and Petrology, 83(1), 136-140. https://doi.org/10.1007/BF00373086
  13. Koizumi, S. et al., 2010, Synthesis of highly dense and fine-grained aggregates of mantle composites by vacuum sintering of nano-sized mineral powders. Physics and Chemistry of Minerals, 37(8), 505-518. https://doi.org/10.1007/s00269-009-0350-y
  14. Kubendran Amos, P.G., Perumal, R., Selzer, M. and Nestler, B., 2020, Multiphase-field modelling of concurrent grain growth and coarsening in complex multicomponent systems. Journal of Materials Science & Technology, 45, 215-229. https://doi.org/10.1016/j.jmst.2019.11.011
  15. Liu, L.-G., 1975, Post-oxide phases of forsterite and enstatite. Geophysical Research Letters, 2(10), 417-419. https://doi.org/10.1029/GL002i010p00417
  16. Mallmann, G. and O'Neill, H.S.C., 2009, The Crystal/Melt Partitioning of V during Mantle Melting as a Function of Oxygen Fugacity Compared with some other Elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50(9), 1765-1794. https://doi.org/10.1093/petrology/egp053
  17. Tange, Y., Irifune, T. and Funakoshi, K.-I., 2008, Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils. High Pressure Research, 28(3), 245-254. https://doi.org/10.1080/08957950802208936
  18. Tschauner, O. et al., 2014, Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science, 346(6213), 1100-1102. https://doi.org/10.1126/science.1259369
  19. Xu, J. et al., 2011, Silicon and magnesium diffusion in a single crystal of MgSiO3 perovskite. Journal of Geophysical Research: Solid Earth, 116(B12).