• Title/Summary/Keyword: Cryptography Applications

Search Result 133, Processing Time 0.028 seconds

Rounds Reduction and Blocks Controlling to Enhance the Performance of Standard Method of Data Cryptography

  • Abu-Faraj, Mua'ad M.;Alqadi, Ziad A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.648-656
    • /
    • 2021
  • Color digital images are used in many multimedia applications and in many vital applications. Some of these applications require excellent protection for these images because they are confidential or may contain confidential data. In this paper, a new method of data cryptography is introduced, tested, and implemented. It will be shown how this method will increase the security level and the throughput of the data cryptography process. The proposed method will use a secret image_key to generate necessary private keys for each byte of the data block. The proposed method will be compared with other standard methods of data cryptography to show how it will meet the requirements of excellent cryptography, by achieving the objectives: Confidentiality, Integrity, Non-repudiation, and Authentication.

MoTE-ECC Based Encryption on MSP430

  • Seo, Hwajeong;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.160-164
    • /
    • 2017
  • Public key cryptography (PKC) is the basic building block for the cryptography applications such as encryption, key distribution, and digital signature scheme. Among many PKC, elliptic curve cryptography (ECC) is the most widely used in IT systems. Recently, very efficient Montgomery-Twisted-Edward (MoTE)-ECC was suggested, which supports low complexity for the finite field arithmetic, group operation, and scalar multiplication. However, we cannot directly adopt the MoTE-ECC to new PKC systems since the cryptography is not fully evaluated in terms of performance on the Internet of Things (IoT) platforms, which only supports very limited computation power, energy, and storage. In this paper, we fully evaluate the MoTE-ECC implementations on the representative IoT devices (16-bit MSP processors). The implementation is highly optimized for the target platform and compared in three different factors (ROM, RAM, and execution time). The work provides good reference results for a gradual transition from legacy ECC to MoTE-ECC on emerging IoT platforms.

CLB-ECC: Certificateless Blind Signature Using ECC

  • Nayak, Sanjeet Kumar;Mohanty, Sujata;Majhi, Banshidhar
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.970-986
    • /
    • 2017
  • Certificateless public key cryptography (CL-PKC) is a new benchmark in modern cryptography. It not only simplifies the certificate management problem of PKC, but also avoids the key escrow problem of the identity based cryptosystem (ID-PKC). In this article, we propose a certificateless blind signature protocol which is based on elliptic curve cryptography (CLB-ECC). The scheme is suitable for the wireless communication environment because of smaller parameter size. The proposed scheme is proven to be secure against attacks by two different kinds of adversaries. CLB-ECC is efficient in terms of computation compared to the other existing conventional schemes. CLB-ECC can withstand forgery attack, key only attack, and known message attack. An e-cash framework, which is based on CLB-ECC, has also been proposed. As a result, the proposed CLB-ECC scheme seems to be more effective for applying to real life applications like e-shopping, e-voting, etc., in handheld devices.

Biometric Identification: Iris Recognition, Biometric Cryptography

  • Rawan Alrasheddi;Zainab Alawami;Maryam Hazazi;Reema Abu Alsaud;Ruba Alobaidi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.41-46
    • /
    • 2023
  • Biometrics is an application of biometric authentication and identification techniques that are used for security. Where people can be identified by physical or behavioral features such as iris, fingerprints, or even voice. Biometrics with cryptography can be used in a variety of applications such as issuing, generating, or associating biometric keys. Biometric identification and cryptography are used in many institutions and high-security systems due to the difficulty of tampering or forgery by hackers. In this paper, literature reviews on biometric identification and cryptography are presented and discussed. In addition to a comparison of techniques in the literature reviews, identifying its strengths and weaknesses, and providing an initial proposal for biometrics and cryptography.

Study of Modular Multiplication Methods for Embedded Processors

  • Seo, Hwajeong;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.145-153
    • /
    • 2014
  • The improvements of embedded processors make future technologies including wireless sensor network and internet of things feasible. These applications firstly gather information from target field through wireless network. However, this networking process is highly vulnerable to malicious attacks including eavesdropping and forgery. In order to ensure secure and robust networking, information should be kept in secret with cryptography. Well known approach is public key cryptography and this algorithm consists of finite field arithmetic. There are many works considering high speed finite field arithmetic. One of the famous approach is Montgomery multiplication. In this study, we investigated Montgomery multiplication for public key cryptography on embedded microprocessors. This paper includes helpful information on Montgomery multiplication implementation methods and techniques for various target devices including 8-bit and 16-bit microprocessors. Further, we expect that the results reported in this paper will become part of a reference book for advanced Montgomery multiplication methods for future researchers.

Implementation of Multi-Precision Multiplication over Sensor Networks with Efficient Instructions

  • Seo, Hwajeong;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.12-16
    • /
    • 2013
  • Sensor network is one of the strongest technologies for various applications including home automation, surveillance system and monitoring system. To ensure secure and robust network communication between sensor nodes, plain-text should be encrypted using encryption methods. However due to their limited computation power and storage, it is difficult to implement public key cryptography, including elliptic curve cryptography, RSA and pairing cryptography, on sensor networks. However, recent works have shown the possibility that public key cryptography could be made available in a sensor network environment by introducing the efficient multi-precision multiplication method. The previous method suggested a broad rule of multiplication to enhance performance. However, various features of sensor motes have not been considered. For optimized implementation, unique features should be handled. In this paper, we propose a fully optimized multiplication method depending on a different specification for sensor motes. The method improves performance by using more efficient instructions and general purpose registers.

NIST Lightweight Cryptography Standardization Process: Classification of Second Round Candidates, Open Challenges, and Recommendations

  • Gookyi, Dennis Agyemanh Nana;Kanda, Guard;Ryoo, Kwangki
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.253-270
    • /
    • 2021
  • In January 2013, the National Institute of Standards and Technology (NIST) announced the CAESAR (Competition for Authenticated Encryption: Security, Applicability, and Robustness) contest to identify authenticated ciphers that are suitable for a wide range of applications. A total of 57 submissions made it into the first round of the competition out of which 6 were announced as winners in March 2019. In the process of the competition, NIST realized that most of the authenticated ciphers submitted were not suitable for resource-constrained devices used as end nodes in the Internet-of-Things (IoT) platform. For that matter, the NIST Lightweight Cryptography Standardization Process was set up to identify authenticated encryption and hashing algorithms for IoT devices. The call for submissions was initiated in 2018 and in April 2019, 56 submissions made it into the first round of the competition. In August 2019, 32 out of the 56 submissions were selected for the second round which is due to end in the year 2021. This work surveys the 32 authenticated encryption schemes that made it into the second round of the NIST lightweight cryptography standardization process. The paper presents an easy-to-understand comparative overview of the recommended parameters, primitives, mode of operation, features, security parameter, and hardware/software performance of the 32 candidate algorithms. The paper goes further by discussing the challenges of the Lightweight Cryptography Standardization Process and provides some suitable recommendations.

Design and Implementation of a Sequential Polynomial Basis Multiplier over GF(2m)

  • Mathe, Sudha Ellison;Boppana, Lakshmi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2680-2700
    • /
    • 2017
  • Finite field arithmetic over GF($2^m$) is used in a variety of applications such as cryptography, coding theory, computer algebra. It is mainly used in various cryptographic algorithms such as the Elliptic Curve Cryptography (ECC), Advanced Encryption Standard (AES), Twofish etc. The multiplication in a finite field is considered as highly complex and resource consuming operation in such applications. Many algorithms and architectures are proposed in the literature to obtain efficient multiplication operation in both hardware and software. In this paper, a modified serial multiplication algorithm with interleaved modular reduction is proposed, which allows for an efficient realization of a sequential polynomial basis multiplier. The proposed sequential multiplier supports multiplication of any two arbitrary finite field elements over GF($2^m$) for generic irreducible polynomials, therefore made versatile. Estimation of area and time complexities of the proposed sequential multiplier is performed and comparison with existing sequential multipliers is presented. The proposed sequential multiplier achieves 50% reduction in area-delay product over the best of existing sequential multipliers for m = 163, indicating an efficient design in terms of both area and delay. The Application Specific Integrated Circuit (ASIC) and the Field Programmable Gate Array (FPGA) implementation results indicate a significantly less power-delay and area-delay products of the proposed sequential multiplier over existing multipliers.

Speed Optimized Implementation of HUMMINGBIRD Cryptography for Sensor Network

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.683-688
    • /
    • 2011
  • The wireless sensor network (WSN) is well known for an enabling technology for the ubiquitous environment such as real-time surveillance system, habitat monitoring, home automation and healthcare applications. However, the WSN featuring wireless communication through air, a resource constraints device and irregular network topology, is threatened by malicious nodes such as eavesdropping, forgery, illegal modification or denial of services. For this reason, security in the WSN is key factor for utilizing the sensor network into the commercial way. There is a series of symmetric cryptography proposed by laboratory or industry for a long time. Among of them, recently proposed HUMMINGBIRD algorithm, motivated by the design of the well-known Enigma machine, is much more suitable to resource constrained devices, including smart card, sensor node and RFID tags in terms of computational complexity and block size. It also provides resistance to the most common attacks such as linear and differential cryptanalysis. In this paper, we implements ultra-lightweight cryptography, HUMMINGBIRD algorithm into the resource constrained device, sensor node as a perfectly customized design of sensor node.

A Study on the Implementation of a D-Class Computation Package based on Java (Java 기반의 D-클래스 계산 패키지 구현에 대한 연구)

  • Lim, Bum-Jun;Han, Jae-Il
    • Journal of Information Technology Services
    • /
    • v.3 no.2
    • /
    • pp.99-104
    • /
    • 2004
  • Conventional and public-key cryptography has been widely accepted as a base technology for the design of computer security systems. D-classes have the potential for application to conventional and public-key cryptography. However, there are very few results on D-classes because the computational complexity of D-class computation is NP-complete. This paper discusses the design of algorithms for the efficient computation of D-classes and the Java implementation of them. In addition, the paper implements the same D-class computation algorithms in C and shows the performance of C and Java programming languages for the computation-intensive applications by comparing their execution results.