
  12

I. INTRODUCTION 
 
Wireless sensor networks (WSNs) are enabling ubiquitous 

technology using data harvested from the environment and 
obtained from various integrated or external sensors. With 
such data, we can utilize a series of applications ranging 
from environmental monitoring systems to surveillance and 
home automation systems. If the collected data is private 
and sensitive, privacy issues are of concern. 

However, some aspects of WSNs, including wireless 
communication, resource constraints, and collaborative 
operation are vulnerable to malicious attacks such as 
eavesdropping, forgery, and impersonation. Therefore, ensu-
ring network security is the first criterion for running WSN 
applications successfully and reliably. 

Conventional WSN technology uses symmetric cryp-
tography to protect the network from adversaries. However, 
it poses a number of problems, including those related to 
key distribution and the number of established keys. WSNs 
are not suited to these features due to their limited 
computational power and storage capability because key 
management impose a heavy overhead on WSNs. 

On the other hand, public key cryptography simplifies 
key management by allowing secure communication by n 
public key and private key pairs in a network having n 
nodes. However, this method has been considered to be too 
burdensome given the resource constraints and limitations 
of low end sensor nodes [1].  

Many studies have been conducted on how to utilize 
public key cryptography over sensor networks. Among them, 

___________________________________________________________________________________________ 
  
Received 18 June 2012, Revised 04 July 2012, Accepted 18 July 2012 
*Corresponding Author Howon Kim (E-mail: howonkim@pusan.ac.kr, Tel: +82-51-510-3927) 
Department of Computer Engineering, Pusan National University, Busandaehak-ro 63boen-gil, Geumjeong-gu, Busan 609-735, Korea 
 

 http://dx.doi.org/10.6109/jicce.2013.11.1.012  print ISSN: 2234-5973  online ISSN: 2234-8883 

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/li-censes/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Copyright ⓒ The Korea Institute of Information and Communication Engineering

 

 

J. lnf. Commun. Converg. Eng. 11(1): 12-16, Mar. 2013                       Regular Paper 

 

Implementation of Multi-Precision Multiplication over Sensor 
Networks with Efficient Instructions 
 
Hwajeong Seo and Howon Kim*, Member, KIICE 
Department of Computer Engineering, Pusan National University, Busan 609-735, Korea 

 
Abstract 
Sensor network is one of the strongest technologies for various applications including home automation, surveillance system 
and monitoring system. To ensure secure and robust network communication between sensor nodes, plain-text should be 
encrypted using encryption methods. However due to their limited computation power and storage, it is difficult to implement 
public key cryptography, including elliptic curve cryptography, RSA and pairing cryptography, on sensor networks. However, 
recent works have shown the possibility that public key cryptography could be made available in a sensor network 
environment by introducing the efficient multi-precision multiplication method. The previous method suggested a broad rule 
of multiplication to enhance performance. However, various features of sensor motes have not been considered. For optimized 
implementation, unique features should be handled. In this paper, we propose a fully optimized multiplication method 
depending on a different specification for sensor motes. The method improves performance by using more efficient 
instructions and general purpose registers. 
 
Index Terms: ATmega128, Instruction set, MSP430, Multi-precision multiplication, Sensor network   

Open Access 



Implementation of Multi-Precision Multiplication over Sensor Networks with Efficient Instructions 

http://jicce.org 13

recently [2, 3] have shown excellent results using an 

ATmega128 and MSP430 board. Due to different 

specifications of sensor nodes, different methods are used 

for each implementation. [2] uses an operand caching method 

that maintains the operands using general purpose registers. 

However, the method does not show high performance on 

MSP430 because MSP430 has a more efficient hardware 

multiplier (multiply and accumulation) module. Gouve and 

Lopez [3] use product scanning methods that maintain the 

intermediate results to reduce memory access. The results 

of both works show high performance for executing 

multiplication. We found that there remains a little room to 

improve performance by understanding the specifications of 

the board. In this paper, we review recent multiplication 

technology and specifications of boards, and then propose 

more efficient implementation methods.  

This paper is organized as follows. In Section II, we give 

an introduction to the basic architecture of the target 

processor (MSP430, Texas Instruments, Dallas, TX, USA; 

ATmega128, Atmel, San Jose, CA, USA) and review 

previous works on polynomial multiplication. In Section III, 

we present the proposed multiplication method. In Section 

IV, we evaluate and analyze the performance of the 

proposed multiplication method. Finally, in Section V, we 

conclude with a brief summary of our contributions. 

 

 

II. RELATED WORKS 

 

A. Multiplication 
 

1) Product Scanning 

The column-wise multiplication strategy sums up the 

columns of partial products aj × bj, where i + j = l for 
column l. Once all the partial products over column l are 
completed, the content of the lowest register of the 
accumulator is stored to memory as a part of the result 
and the other registers are used for accumulation for the 
next column operation. When column number l incre-
ments, multiplication is performed for the next column. 
This process is repeated until all the partial products have 
been computed. 

 

2) Operand Caching 

This method is a new approach to multi-precision 
multiplication, in which the number of load and store 
operations is reduced and the instructions are loaded by 
reusing operands that have been loaded into the working 
registers. The method follows the product-scanning 
approach except that it divides the calculation over 
several rows. All the needed words of one operand can 
be cached in the available working registers. 

 

Table 1. Instructions of MSP430 used in this paper 

Description Syntax Operation No. of clock 

X  toLoad  )X(R ,R mov ds  sd R)R(X ←+  4 

)X(R ,@R mov ds  
)R()R(X sd ←+  5 

label  toLoad  label& ),X(R mov s  
)R(X(label)

s
+←  6 

label& ,R mov
s  s

R(label)← 4 

label& ,@R mov
s
+

 
)R((label) s← 2RR ss +← 5 

label& ,@R mov
s  

)R((label) s← 5 

register  toLoad  
ds R ),X(R mov
 

)RX(R sd +←  3 

registerCopy  
ds R ,R mov
 sd RR ← 1 

registerClear  
dRclr 
 ddd RRR ⊕← 1 

registers  theofAddition  
ds R,R add  dsd RRR +←  1 

ds R,R addc  CRRR dsd ++←  1 

dR adc  CRR dd +←  1 

Rd : destination register, Rs : source register, X, label : indirect address register, PC : program counter, C : carry bit at status register. 

 

Table 2. Instructions of ATmega128 used in this paper 

Description Syntax Operation No. of clock

Load to Y Y,R ld d
 )(Rd Y←  2 

+Y,R ld d
 )(Rd Y← 1YY, +←  2 

qY +,R ld d
 )(Rd qY +←

 
2 

Store to X 
s

RX, st  
s

R)( ←X
 2 

s
R,X st +  1,R)(

s
+←← XXX

 2 

Copy register sd R,R mov   
sd RR ←
 1 

Addition sd R,R add  
dsd RRR +←
 1 

Rd : destination register, Rs : source register.         



J. lnf. Commun. Converg. Eng. 11(1): 12-16, Mar. 2013 

http://dx.doi.org/10.6109/jicce.2013.11.1.012 14

  

B. Board Specification 
 
1) The MSP430 processor 

MSP430 is a 16-bit microcontroller clocked at 8.192 MHz 

including an internal oscillator, timer, hardware multiplier, 

erasable programmable read-only memory (EPROM), mask 

ROM, flash memory, RAM, and Joint Test Action Group 

(JTAG) [4].  

The processor consists of 16 registers holding 16 bits 

each. The registers are numbered from 0 to 15. The first four 

registers are designated for special purposes and the other 

registers are general purpose ones.  

The MSP430 processor usually provides four addressing 

modes (direct, indexed, indirect, and increment). The target 

processor has 27 instruction sets described in Table 1. 

The 16×16-bit hardware multiplier is a peripheral that 

does not affect MSP430 CPU activities. A programmer is 

able to access a peripheral register to determine operation 

modes: 1) Multiplication of unsigned 8-bit and 16-bit 

operands (MPY, address 130h); 2) Multiplication of signed 

8-bit and 16-bit operands (MPYS, address 132h); and 3) 

Multiply-accumulate function (MAC) using unsigned 8-bit 

and 16-bit operands (address 134h). 

 

2) Architecture of ATmega128 

The MICAz mote is equipped with an ATmega128 8-bit 

processor clocked at 7.3728 MHz. It has a 128 kB 

electrically EPROM (EEPROM) chip and 4 kB RAM chip 

[5]. The ATmega128 processor has reduced instruction set 

computer (RISC) architecture with 32 registers. Among 

them, 6 registers (r26-r31) hold the special pointers for 

indirect addressing. The ATmega128 has a 16-bit addressing 

scheme that requires two registers for the address alone. The 

remaining 26 registers are available for arithmetic oper-

ations. One arithmetic instruction costs one clock cycle, and 

memory instructions or memory addressing costs two 

processing cycles. Table 2 illustrates the instructions, 

including arithmetic, logical and register control, and data 

instructions.  

 

 

3) Addressing Mode 

Both architectures provide four different addressing 

modes. First is the direct mode for accessing the 

destination address directly. Second is the indexed mode, 

which is similar to array access in the C language. The 

destination can be accessed with the addition of a source 

and offset. The third mode is the indirect mode, which 

accesses the destination by using registers, so it executes 

more efficiently than memory access. The last mode is the 

increment mode, which has the strength of computing the 

address automatically after accessing the address when 

destinations are sequentially placed in memory. 

 

 

III. IMPLEMENTATION TECHNIQUES 

 

In this section, we propose implementation techniques. 

The main idea is accessing memory only a small number 

of times and removing reducible operations. We used 

previous multiplication methods, operand caching, and 

product scanning for the ATmega128 and MSP430, 

respectively. 

 

A. Operand Caching Using General Purpose 
Registers 
 

Memory access operations consume more clock cycles 

than register-based operations. Therefore, replacing memory 

operations with register operations efficiently improves 

performance. In the implementation, we maintained the 

values in the registers and reduced memory access. In the 

MSP430, 6 registers are used for operand caching and in 

the ATmega128, 20 registers are used for operand 

caching. Through the partial product, some portion of 

present and future operands overlaps. In this case, we 

just maintained the value in the registers and reduced 

additional operations. 

 

 

Table 3. Addressing modes 

Description Syntax Operation Source 

Direct dR  The value stored in the register indicated by source register. Register 

Indexed )X(Rd  An immediate value is added to the value in the register. Memory address pointed by register + 
immediate number 

Indirect 
d@R  The value stored in the register is used to index memory and return 

the value at that address in memory. 
Memory address pointed by register 

Increment +d@R  The value stored in the register is used to index memory and return 
the value at that address in memory. Then the register is 
incremented by 1 for byte or 2 for word. 

Memory address pointed by register 
(increment register) 



Implementation of Multi-Precision Multiplication over Sensor Networks with Efficient Instructions 

http://jicce.org 15

B. Addressing Mode 
 

To enhance the performance of polynomial multiplication 

over that of the MSP430, we have used the increment 

addressing mode as much as possible because the increment 

address mode can save 1 clock cycle in the address 

calculation time. That is, it can save the time for calculating 

the next instruction or data to be fetched. When saving the 

result, we used the index mode, which easily computes the 

destination from the source address with an offset. 

For the ATmega128, we used the index mode for load and 

store operations. The ATmega128 makes no distinction 

between index and increment modes, so the addressing 

mode is not of particular concern. 

 
C. Register Clear 
 

To store the intermediate results, we maintained registers 

for accumulation. The registers should be first initialized, 

but we stored the result instead of using the clear and 

addition operation. The first and last partial products do not 

generate a carry, so we do not need to initialize the registers 

in those cases. Through these procedures, we were able to 

optimize the number of clear operations. 
 

IV. EVALUATION 

 

Tables 4 and 5 show the results of multiplication using 

MSP430 and ATmega128, respectively. The MSP430 shows 

great improvements by using register caching and efficient 

address modes. Therefore, the number of times that memory 

is accessed is reduced and reducible addressing operations 

are removed.  

In the case of the ATmega128, the load and store 

instructions are reduced by maintaining intermediate results. 

Secondly, the clear operations for register initialization can 

be minimized considering the cases in which cache is not 

generated. The detailed instructions are presented in Table 5. 

 

 

V. CONCLUSIONS 

 

In the paper, we show the efficient implementation 

techniques by using the unique specifications of the target 

board. By using an efficient addressing mode and general 

purpose registers, the performance is improved in both 

architectures. The information described in the paper could 

be used for many other implementations in security and 

graphics processing modules. 

Table 4. Comparison of instruction counts of 160-bit multiplication over MSP430 

Instruction 
Clock cycles per 

instruction 

Comba MAC [3] Proposal 

Instruction Cycle Instruction Cycle 

add @reg,reg 2 99 198 - - 

addc &label,reg 3 - - 135 405 

Other additions - - - 34 34 

mov @reg+,reg 2 - - 12 24 

mov x(reg),&label 6 20 120 1 6 

mov reg,x(reg) 4 - - 19 76 

mov reg,reg 1 - - - - 

mov reg,&label 4 89 356 101 404 

mov x(reg),reg 3 13 39 3 9 

mov @reg+,&label 5 100 500 54 270 

mov @reg,&label 5 29 145 50 250 

mov @reg,x(reg) 5 20 100 - - 

Other   128  - 

Total   1,586  1,478 

Table 5. Comparison of instruction counts of 160-bit multiplication over ATmega128 

Instruction 
Clock cycles per 

instruction 

Operand caching [2] Proposal 

Instruction Cycle Instruction Cycle 

mov reg,reg 1 2 2 2 2 

add reg,reg 1 1,240 1,240 1,240 1,240 

mul reg,reg 2 400 800 400 800 

ld reg, x(reg)  2 80 160 70 140 

st x(reg), reg 2 60 120 60 120 

Other 1 68 68 54 54 

Total   2,395  2,361 



J. lnf. Commun. Converg. Eng. 11(1): 12-16, Mar. 2013 

http://dx.doi.org/10.6109/jicce.2013.11.1.012 16

ACKNOWLEDGMENTS 

 

This work was supported by the IT R&D program of 

MKE/KEIT (10039953, Network Centric Next Generation 

Active RFID Technology Development). 

 

 

REFERENCES 
 

[1] M. Guerrero-Zapata, R. Zilan, J. Barcelo-Ordinas, K. Bicakci, and 

B. Tavli, “The future of security in wireless multimedia sensor 

networks: a position paper,” Telecommunication Systems, vol. 45, 

no. 1, pp. 77-91, 2010. 

 

[2] M. Hutter and E. Wenger, “Fast multi-precision multiplication for 

public-key cryptography on embedded microprocessors,” in 

Proceedings of the 13th International Conference on Cryptographic 

Hardware and Embedded Systems, Nara, Japan, pp. 459-474, 2011. 

[3] C. P. L. Gouve and J. Lopez, “Software implementation of pairing-

based cryptography on sensor networks using the MSP430 

microcontroller,” Progress in Cryptology – INDOCRYPT 2009, 

Lecture Notes in Computer Science, vol. 5922, pp. 248-262, 2009. 

[4] Texas Instruments, MSP430 ultra-low-power microcontrollers 

[Internet], Available: http://www.ti.com/lit/sg/slab034v/slab034v.pdf. 

[5] Atmel, 8-bit AVR microcontroller with 128 kB in-system 

programmable flash: ATmega128 and ATmega128L [Internet], rev. 

2467M-AVR-11/04, Available: http://uglyduck.ath.cx/PDF/Atmel 

/AVR/ATmega128.pdf.

 

 

 

 

 

 

 

Howon Kim 

Dr. Kim received the BSEE degree from Kyungpook National University, Daegu, Republic of Korea, in 1993 and the 
MS and PhD degrees in electronic and electrical engineering from Pohang University of Science and Technology 
(POSTECH), Pohang, Republic of Korea, in 1995 and 1999, respectively. From July 2003 to June 2004, he studied 
with the COSY group at the Ruhr-University of Bochum, Germany. He was a senior member of the technical staff at 
the Electronics and Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea. He is currently 
working as an associate professor with the Department of Computer Engineering, School of Computer Science and 
Engineering, Pusan National University, Busan, Republic of Korea. His research interests include RFID technology, 
sensor networks, information security, and computer architecture. Currently, his main research focus is on mobile 
RFID technology and sensor networks, public key cryptosystems, and their security issues. He is a member of the 
IEEE, and the International Association for Cryptologic Research (IACR). 
 

Hwajeong Seo 
He received the BSEE degree from Pusan National University, Busan, and Republic of Korea in 2010, and he 
received the MS degree in Computer Engineering at Pusan National University. He is in PhD degree in computer 
engineering from Pusan National University. His research interests include sensor networks, information security, 
Elliptic Curve Cryptography, and RFID security. 

 




